Glossary

Editor: A.P.M. Baede (Netherlands)

Notes: This glossary defines some specific terms as the lead authors intend them to be interpreted in the context of this report. Red, italicised words indicate that the term is defined in the Glossary.

8.2ka event Following the last post-glacial warming, a rapid climate oscillation with a cooling lasting about 400 years occurred about 8.2 ka. This event is also referred to as the 8.2kyr event.

Abrupt climate change The nonlinearity of the climate system may lead to abrupt climate change, sometimes called rapid climate change, abrupt events or even surprises. The term abrupt often refers to time scales faster than the typical time scale of the responsible forcing. However, not all abrupt climate changes need be externally forced. Some possible abrupt events that have been proposed include a dramatic reorganisation of the thermohaline circulation, rapid deglaciation and massive melting of permafrost or increases in soil respiration leading to fast changes in the carbon cycle. Others may be truly unexpected, resulting from a strong, rapidly changing forcing of a nonlinear system.

Active layer The layer of ground that is subject to annual thawing and freezing in areas underlying permafrost (Van Everdingen, 1998).

Adiabatic process An adiabatic process is a process in which no external heat is gained or lost by the system. The opposite is called a diabatic process.

Adjustment time See Lifetime; see also Response time.

Advection Transport of water or air along with its properties (e.g., temperature, chemical tracers) by the motion of the fluid. Regarding the general distinction between advection and convection, the former describes the predominantly horizontal, large-scale motions of the atmosphere or ocean, while convection describes the predominantly vertical, locally induced motions.

Aerosols A collection of airborne solid or liquid particles, with a typical size between 0.01 and 10 µm that reside in the atmosphere for at least several hours. Aerosols may be of either natural or anthropogenic origin. Aerosols may influence climate in several ways: directly through scattering and absorbing radiation, and indirectly by acting as cloud condensation nuclei or modifying the optical properties and lifetime of clouds (see Indirect aerosol effect).

Afforestation Planting of new forests on lands that historically have not contained forests. For a discussion of the term forest and related terms such as afforestation, reforestation and deforestation, see the IPCC Special Report on Land Use, Land-Use Change and Forestry (IPCC, 2000). See also the report on Definitions and Methodological Options to Inventory Emissions from Direct Human-induced Degradation of Forests and Devegetation of Other Vegetation Types (IPCC, 2003).

Air mass A widespread body of air, the approximately homogeneous properties of which (1) have been established while that air was situated over a particular region of the Earth’s surface, and (2) undergo specific modifications while in transit away from the source region (AMS, 2000).

Albedo The fraction of solar radiation reflected by a surface or object, often expressed as a percentage. Snow-covered surfaces have a high albedo, the surface albedo of soils ranges from high to low, and vegetation-covered surfaces and oceans have a low albedo. The Earth’s planetary albedo varies mainly through varying cloudiness, snow, ice, leaf area and land cover changes.

Albedo feedback A climate feedback involving changes in the Earth’s albedo. It usually refers to changes in the cryosphere, which has an albedo much larger (~0.8) than the average planetary albedo (~0.3). In a warming climate, it is anticipated that the cryosphere would shrink, the Earth’s overall albedo would decrease and more solar radiation would be absorbed to warm the Earth still further.

Alkalinity A measure of the capacity of a solution to neutralize acids.

Altimetry A technique for measuring the height of the sea, lake or river, land or ice surface with respect to the centre of the Earth within a defined terrestrial reference frame. More conventionally, the height is with respect to a standard reference ellipsoid approximating the Earth’s oblateness, and can be measured from space by using radar or laser with centimetric precision at present. Altimetry has the advantages of being a geocentric measurement, rather than a measurement relative to the Earth’s crust as for a tide gauge, and of affording quasi-global coverage.

Annular modes Preferred patterns of change in atmospheric circulation corresponding to changes in the zonally averaged mid-latitude westerlies. The Northern Annular Mode has a bias to the North Atlantic and has a large correlation with the North Atlantic Oscillation. The Southern Annular Mode occurs in the Southern Hemisphere. The variability of the mid-latitude westerlies has also been known as zonal flow (or wind) vacillation, and defined through a zonal index. For the corresponding circulation indices, see Box 3.4.

Anthropogenic Resulting from or produced by human beings.

Atlantic Multi-decadal Oscillation (AMO) A multi-decadal (65 to 75 year) fluctuation in the North Atlantic, in which sea surface temperatures showed warm phases during roughly 1860 to 1880 and 1930 to 1960 and cool phases during 1905 to 1925 and 1970 to 1990 with a range of order 0.4°C.

Atmosphere The gaseous envelope surrounding the Earth. The dry atmosphere consists almost entirely of nitrogen (78.1% volume mixing ratio) and oxygen (20.9% volume mixing ratio), together with a number of trace gases, such as argon (0.93% volume mixing ratio), helium and radiatively active greenhouse gases such as carbon dioxide (0.035% volume mixing ratio) and ozone. In addition, the atmosphere contains the greenhouse gas water vapour, whose amounts are highly variable but typically around 1% volume mixing ratio. The atmosphere also contains clouds and aerosols.

Atmospheric boundary layer The atmospheric layer adjacent to the Earth’s surface that is affected by friction against that boundary
A Bayesian method is a method by which a change in time is affected by the magnetic fields of the Sun and Earth, which influence its production from cosmic rays (see Cosmogenic isotopes).

C3 plants Plants that produce a three-carbon compound during photosynthesis, including most trees and agricultural crops such as rice, wheat, soybeans, potatoes and vegetables.

C4 plants Plants that produce a four-carbon compound during photosynthesis, mainly of tropical origin, including grasses and the agriculturally important crops maize, sugar cane, millet and sorghum.

Carbonaceous aerosol Aerosol consisting predominantly of organic substances and various forms of black carbon (Charlson and Heintzenberg, 1995, p. 401).

Carbon cycle The term used to describe the flow of carbon (in various forms, e.g., as carbon dioxide) through the atmosphere, ocean, terrestrial biosphere and lithosphere.

Carbon dioxide (CO₂) A naturally occurring gas, also a by-product of burning fossil fuels from fossil carbon deposits, such as oil, gas and coal, of burning biomass and of land use changes and other industrial processes. It is the principal anthropogenic greenhouse gas that affects the Earth’s radiative balance. It is the reference gas against which other greenhouse gases are measured and therefore has a Global Warming Potential of 1.

Carbon dioxide (CO₂) fertilization The enhancement of the growth of plants as a result of increased atmospheric carbon dioxide (CO₂) concentration. Depending on their mechanism of photosynthesis, certain types of plants are more sensitive to changes in atmospheric CO₂ concentration. In particular, C₃ plants generally show a larger response to CO₂ than C₄ plants.

CFC See Halocarbons.

Chaos A dynamical system such as the climate system, governed by nonlinear deterministic equations (see Nonlinearity), may exhibit erratic or chaotic behaviour in the sense that very small changes in the initial state of the system in time lead to large and apparently unpredictable changes in its temporal evolution. Such chaotic behaviour may limit the predictability of nonlinear dynamical systems.

Charcoal Material resulting from charring of biomass, usually retaining some of the microscopic texture typical of plant tissues; chemically it consists mainly of carbon with a disturbed graphitic structure, with lesser amounts of oxygen and hydrogen (Charlson and Heintzenberg, 1995, p. 402). See Black carbon; Soot.

Chronology Arrangement of events according to dates or times of occurrence.

Clathrate (methane) A partly frozen slushy mix of methane gas and ice, usually found in sediments.

Climate Climate in a narrow sense is usually defined as the average weather, or more rigorously, as the statistical description in terms of the mean and variability of relevant quantities over a period of time ranging from months to thousands or millions of years. The classical period for averaging these variables is 30 years, as defined by the World Meteorological Organization. The relevant quantities are most often surface variables such as temperature, precipitation and wind. Climate in a wider sense is the state, including a statistical description, of the climate system. In various chapters in this report different averaging periods, such as a period of 20 years, are also used.
Climate change Climate change refers to a change in the state of the climate that can be identified (e.g., by using statistical tests) by changes in the mean and/or the variability of its properties, and that persists for an extended period, typically decades or longer. Climate change may be due to natural internal processes or external forcings, or to persistent anthropogenic changes in the composition of the atmosphere or in land use. Note that the Framework Convention on Climate Change (UNFCCC), in its Article 1, defines climate change as: ‘a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods’. The UNFCCC thus makes a distinction between climate change attributable to human activities altering the atmospheric composition, and climate variability attributable to natural causes. See also Climate variability: Detection and Attribution.

Climate change commitment Due to the thermal inertia of the ocean and slow processes in the biosphere, the cryosphere and land surfaces, the climate would continue to change even if the atmospheric composition were held fixed at today’s values. Past change in atmospheric composition leads to a committed climate change, which continues for as long as a radiative imbalance persists and until all components of the climate system have adjusted to a new state. The further change in temperature after the composition of the atmosphere is held constant is referred to as the constant composition temperature commitment or simply committed warming or warming commitment. Climate change commitment includes other future changes, for example in the hydrological cycle, in extreme weather and climate events, and in sea level change.

Climate feedback An interaction mechanism between processes in the climate system is called a climate feedback when the result of an initial process triggers changes in a second process that in turn influences the initial one. A positive feedback intensifies the original process, and a negative feedback reduces it.

Climate Feedback Parameter A way to quantify the radiative response of the climate system to a global surface temperature change induced by a radiative forcing (units: W m⁻²°C⁻¹). It varies as the inverse of the effective climate sensitivity. Formally, the Climate Feedback Parameter (A) is defined as: A = (Q – AF) / ΔT, where Q is the global mean radiative forcing, T is the global mean air surface temperature, F is the heat flux into the ocean and Δ represents a change with respect to an unperturbed climate.

Climate model (spectrum or hierarchy) A numerical representation of the climate system based on the physical, chemical and biological properties of its components, their interactions and feedback processes, and accounting for all or some of its known properties. The climate system can be represented by models of varying complexity, that is, for any one component or combination of components a spectrum or hierarchy of models can be identified, differing in such aspects as the number of spatial dimensions, the extent to which physical, chemical or biological processes are explicitly represented, or the level at which empirical parametrizations are involved. Coupled Atmosphere-Ocean General Circulation Models (AOGCMs) provide a representation of the climate system that is near the most comprehensive end of the spectrum currently available. There is an evolution towards more complex models with interactive chemistry and biology (see Chapter 8). Climate models are applied as a research tool to study and simulate the climate, and for operational purposes, including monthly, seasonal and interannual climate predictions.

Climate prediction A climate prediction or climate forecast is the result of an attempt to produce an estimate of the actual evolution of the climate in the future, for example, at seasonal, interannual or long-term time scales. Since the future evolution of the climate system may be highly sensitive to initial conditions, such predictions are usually probabilistic in nature. See also Climate projection; Climate scenario; Predictability.

Climate projection A projection of the response of the climate system to emission or concentration scenarios of greenhouse gases and aerosols, or radiative forcing scenarios, often based upon simulations by climate models. Climate projections are distinguished from climate predictions in order to emphasize that climate projections depend upon the emission/concentration/radiative forcing scenario used, which are based on assumptions concerning, for example, future socioeconomic and technological developments that may or may not be realised and are therefore subject to substantial uncertainty.

Climate response See Climate sensitivity.

Climate scenario A plausible and often simplified representation of the future climate, based on an internally consistent set of climatological relationships that has been constructed for explicit use in investigating the potential consequences of anthropogenic climate change, often serving as input to impact models. Climate projections often serve as the raw material for constructing climate scenarios, but climate scenarios usually require additional information such as about the observed current climate. A climate change scenario is the difference between a climate scenario and the current climate.

Climate sensitivity In IPCC reports, equilibrium climate sensitivity refers to the equilibrium change in the annual mean global surface temperature following a doubling of the atmospheric equivalent carbon dioxide concentration. Due to computational constraints, the equilibrium climate sensitivity in a climate model is usually estimated by running an atmospheric general circulation model coupled to a mixed-layer ocean model, because equilibrium climate sensitivity is largely determined by atmospheric processes. Efficient models can be run to equilibrium with a dynamic ocean.

The effective climate sensitivity is a related measure that circumvents the requirement of equilibrium. It is evaluated from model output for evolving non-equilibrium conditions. It is a measure of the strengths of the climate feedbacks at a particular time and may vary with forcing history and climate state. The climate sensitivity parameter (units: °C (W m⁻²)⁻¹) refers to the equilibrium change in the annual mean global surface temperature following a unit change in radiative forcing.

The transient climate response is the change in the global surface temperature, averaged over a 20-year period, centred at the time of atmospheric carbon dioxide doubling, that is, at year 70 in a 1% yr⁻¹ compound carbon dioxide increase experiment with a global coupled climate model. It is a measure of the strength and rapidity of the surface temperature response to greenhouse gas forcing.

Climate shift or climate regime shift An abrupt shift or jump in mean values signalling a change in regime. Most widely used in conjunction with the 1976/1977 climate shift that seems to correspond to a change in El Niño-Southern Oscillation behavior.

Climate system The climate system is the highly complex system consisting of five major components: the atmosphere, the hydrosphere, the cryosphere, the land surface and the biosphere, and the interactions between them. The climate system evolves in time under the influence of its own internal dynamics and because of external forcings such as volcanic eruptions, solar variations and...

Annex I
Anthropogenic forcings such as the changing composition of the atmosphere and land use change.

Climate variability Climate variability refers to variations in the mean state and other statistics (such as standard deviations, the occurrence of extremes, etc.) of the climate on all spatial and temporal scales beyond that of individual weather events. Variability may be due to natural internal processes within the climate system (‘internal variability’), or to variations in natural or anthropogenic external forcing (‘external variability’). See also Climate change.

Cloud condensation nuclei (CCN) Airborne particles that serve as an initial site for the condensation of liquid water, which can lead to the formation of cloud droplets. See also Aerosols.

Cloud feedback A cloud feedback involving changes in any of the properties of clouds as a response to other atmospheric changes. Understanding cloud feedbacks and determining their magnitude and sign require an understanding of how a change in climate may affect the spectrum of cloud types, the cloud fraction and height, and the radiative properties of clouds, and an estimate of the impact of these changes on the Earth’s radiation budget. At present, cloud feedbacks remain the largest source of uncertainty in climate sensitivity estimates. See also Cloud radiative forcing; Radiative forcing.

Cloud radiative forcing Cloud radiative forcing is the difference between the all-sky Earth’s radiation budget and the clear-sky Earth’s radiation budget (units: W m⁻²).

CO₂-equivalent See Equivalent carbon dioxide.

Confidence The level of confidence in the correctness of a result is expressed in this report, using a standard terminology defined in Box 1.1. See also Likelihood; Uncertainty.

Convection Vertical motion driven by buoyancy forces arising from static instability, usually caused by near-surface cooling or increases in salinity in the case of the ocean and near-surface warming in the case of the atmosphere. At the location of convection, the horizontal scale is approximately the same as the vertical scale, as opposed to the large contrast between these scales in the general circulation. The net vertical mass transport is usually much smaller than the upward and downward exchange.

Cosmogenic isotopes Rare isotopes that are created when a high-energy cosmic ray interacts with the nucleus of an in situ atom. They are often used as indications of solar magnetic activity (which can shield cosmic rays) or as tracers of atmospheric transport, and are also called cosmogenic nuclides.

Cryosphere The component of the climate system consisting of all snow, ice and frozen ground (including permafrost) on and beneath the surface of the Earth and ocean. See also Glacier; Ice sheet.

Dansgaard-Oeschger events Abrupt warming events followed by gradual cooling. The abrupt warming and gradual cooling is primarily seen in Greenland ice cores and in palaeoclimate records from the nearby North Atlantic, while a more general warming followed by a gradual cooling has been observed in other areas as well, at intervals of 1.5 to 7 kyr during glacial times.

Deforestation Conversion of forest to non-forest. For a discussion of the term forest and related terms such as afforestation, reforestation, and deforestation see the IPCC Special Report on Land Use, Land-Use Change and Forestry (IPCC, 2000). See also the report on Definitions and Methodological Options to Inventory Emissions from Direct Human-induced Degradation of Forests and Devegetation of Other Vegetation Types (IPCC, 2003).

Desertification Land degradation in arid, semi-arid, and dry sub-humid areas resulting from various factors, including climatic variations and human activities. The United Nations Convention to Combat Desertification defines land degradation as a reduction or loss in arid, semi-arid, and dry sub-humid areas, of the biological or economic productivity and complexity of rain-fed cropland, irrigated cropland, or range, pasture, forest, and woodlands resulting from land uses or from a process or combination of processes, including processes arising from human activities and habitation patterns, such as (i) soil erosion caused by wind and/or water; (ii) deterioration of the physical, chemical and biological or economic properties of soil; and (iii) long-term loss of natural vegetation.

Detection and attribution Climate varies continually on all time scales. Detection of climate change is the process of demonstrating that climate has changed in some defined statistical sense, without providing a reason for that change. Attribution of causes of climate change is the process of establishing the most likely causes for the detected change with some defined level of confidence.

Diatoms Silt-sized algae that live in surface waters of lakes, rivers and oceans and form shells of opal. Their species distribution in ocean cores is often related to past sea surface temperatures.

Diurnal temperature range The difference between the maximum and minimum temperature during a 24-hour period.

Dobson unit (DU) A unit to measure the total amount of ozone in a vertical column above the Earth’s surface (total column ozone). The number of Dobson units is the thickness in units of 10⁻⁵ m that the ozone column would occupy if compressed into a layer of uniform density at a pressure of 1,013 hPa and a temperature of 0°C. One DU corresponds to a column of ozone containing 2.69 × 1,020 molecules per square metre. A typical value for the amount of ozone in a column of the Earth’s atmosphere, although very variable, is 300 DU.

Downscaling Downscaling is a method that derives local- to-regional-scale (10 to 100 km) information from larger-scale models or data analyses. Two main methods are distinguished: dynamical downscaling and empirical/statistical downscaling. The dynamical method uses the output of regional climate models, global models with variable spatial resolution or high-resolution global models. The empirical/statistical methods develop statistical relationships that link the large-scale atmospheric variables with local/regional climate variables. In all cases, the quality of the downscaled product depends on the quality of the driving model.

Drought In general terms, drought is a ‘prolonged absence or marked deficiency of precipitation’, a ‘deficiency that results in water shortage for some activity or for some group’, or a ‘period of abnormally dry weather sufficiently prolonged for the lack of precipitation to cause a serious hydrological imbalance’ (Heim, 2002). Drought has been defined in a number of ways. Agricultural drought relates to moisture deficits in the topmost 1 metre or so of soil (the root zone) that affect crops, meteorological drought is mainly a prolonged deficit of precipitation, and hydrologic drought is related to below-normal streamflow, lake and groundwater levels. A megadrought is a long-drawn out and pervasive drought, lasting much longer than normal, usually a decade or more. For further information, see Box 3.1.

Dynamical system A process or set of processes whose evolution in time is governed by a set of deterministic physical laws. The climate system is a dynamical system. See Abrupt climate change; Chaos; Nonlinearity; Predictability.
Ecosystem: A system of living organisms interacting with each other and their physical environment. The boundaries of what could be called an ecosystem are somewhat arbitrary, depending on the focus of interest or study. Thus, the extent of an ecosystem may range from very small spatial scales to, ultimately, the entire Earth.

Efficacy: A measure of how effective a radiative forcing from a given anthropogenic or natural mechanism is at changing the equilibrium global surface temperature compared to an equivalent radiative forcing from carbon dioxide. A carbon dioxide increase by definition has an efficacy of 1.0.

Ekman pumping: Frictional stress at the surface between two fluids (atmosphere and ocean) or between a fluid and the adjacent solid surface (Earth’s surface) forces a circulation. When the resulting mass transport is converging, mass conservation requires a vertical flow away from the surface. This is called Ekman pumping. The opposite effect, in case of divergence, is called Ekman suction. The effect is important in both the atmosphere and the ocean.

El Niño-Southern Oscillation (ENSO): The term El Niño was initially used to describe a warm-water current that periodically flows along the coast of Ecuador and Perú, disrupting the local fishery. It has since become identified with a basin-wide warming of the tropical Pacific Ocean east of the date line. This oceanic event is associated with a fluctuation of a global-scale tropical and subtropical surface pressure pattern called the Southern Oscillation. This coupled atmosphere-ocean phenomenon, with preferred time scales of two to about seven years, is collectively known as the El Niño-Southern Oscillation (ENSO). It is often measured by the surface pressure anomaly difference between Darwin and Tahiti and the sea surface temperatures in the central and eastern equatorial Pacific. During an ENSO event, the prevailing trade winds weaken, reducing upwelling and altering ocean currents such that the sea surface temperatures warm, further weakening the trade winds. This event has a great impact on the wind, sea surface temperature and precipitation patterns in the tropical Pacific. It has climatic effects throughout the Pacific region and in many other parts of the world, through global teleconnections. The cold phase of ENSO is called La Niña.

Emission scenario: A plausible representation of the future development of emissions of substances that are potentially radiatively active (e.g., greenhouse gases, aerosols), based on a coherent and internally consistent set of assumptions about driving forces (such as demographic and socioeconomic development, technological change) and their key relationships. Concentration scenarios, derived from emission scenarios, are used as input to a climate model to compute climate projections. In IPCC (1992) a set of emission scenarios was presented which were used as a basis for the climate projections in IPCC (1996). These emission scenarios are referred to as the IS92 scenarios. In the IPCC Special Report on Emission Scenarios (Nakićenović and Swart, 2000) new emission scenarios, the so-called SRES scenarios, were published, some of which were used, among others, as a basis for the climate projections presented in Chapters 9 to 11 of IPCC (2001) and Chapters 10 and 11 of this report. For the meaning of some terms related to these scenarios, see SRES scenarios.

Energy balance: The difference between the total incoming and total outgoing energy. If this balance is positive, warming occurs; if it is negative, cooling occurs. Averaged over the globe and over long time periods, this balance must be zero. Because the climate system derives virtually all its energy from the Sun, zero balance implies that, globally, the amount of incoming solar radiation on average must be equal to the sum of the outgoing reflected solar radiation and the outgoing thermal infrared radiation emitted by the climate system. A perturbation of this global radiation balance, be it anthropogenic or natural, is called radiative forcing.

Ensemble: A group of parallel model simulations used for climate projections. Variation of the results across the ensemble members gives an estimate of uncertainty. Ensembles made with the same model but different initial conditions only characterise the uncertainty associated with internal climate variability, whereas multi-model ensembles including simulations by several models also include the impact of model differences. Perturbed-parameter ensembles, in which model parameters are varied in a systematic manner, aim to produce a more objective estimate of modelling uncertainty than is possible with traditional multi-model ensembles.

Equilibrium and transient climate experiment: An equilibrium climate experiment is an experiment in which a climate model is allowed to fully adjust to a change in radiative forcing. Such experiments provide information on the difference between the initial and final states of the model, but not on the time-dependent response. If the forcing is allowed to evolve gradually according to a prescribed emission scenario, the time-dependent response of a climate model may be analysed. Such an experiment is called a transient climate experiment. See Climate projection.

Equilibrium line: The boundary between the region on a glacier where there is a net annual loss of ice mass (ablation area) and that where there is a net annual gain (accumulation area). The altitude of this boundary is referred to as equilibrium line altitude.

Equivalent carbon dioxide (CO₂) concentration: The concentration of carbon dioxide that would cause the same amount of radiative forcing as a given mixture of carbon dioxide and other greenhouse gases.

Equivalent carbon dioxide (CO₂) emission: The amount of carbon dioxide emission that would cause the same integrated radiative forcing, over a given time horizon, as an emitted amount of a well mixed greenhouse gas or a mixture of well mixed greenhouse gases. The equivalent carbon dioxide emission is obtained by multiplying the emission of a well mixed greenhouse gas by its Global Warming Potential for the given time horizon. For a mix of greenhouse gases it is obtained by summing the equivalent carbon dioxide emissions of each gas. Equivalent carbon dioxide emission is a standard and useful metric for comparing emissions of different greenhouse gases but does not imply exact equivalence of the corresponding climate change responses (see Section 2.10).

Evapotranspiration: The combined process of evaporation from the Earth’s surface and transpiration from vegetation.

External forcing: External forcing refers to a forcing agent outside the climate system causing a change in the climate system. Volcanic eruptions, solar variations and anthropogenic changes in the composition of the atmosphere and land use change are external forcings.

Extreme weather event: An extreme weather event is an event that is rare at a particular place and time of year. Definitions of rare vary, but an extreme weather event would normally be as rare as or rarer than the 10th or 90th percentile of the observed probability density function. By definition, the characteristics of what is called extreme weather may vary from place to place in an absolute sense. Single extreme events cannot be simply and directly attributed to...
ann.

* Faculae Bright patches on the Sun. The area covered by faculae is greater during periods of high solar activity.

* Feedback See Climate feedback.

* Fingerprint The climate response pattern in space and/or time to a specific forcing is commonly referred to as a fingerprint. Fingerprints are used to detect the presence of this response in observations and are typically estimated using forced climate model simulations.

* Flux adjustment To avoid the problem of coupled Atmosphere-Ocean General Circulation Models (AOGCMs) drifting into some unrealistic climate state, adjustment terms can be applied to the atmosphere-ocean fluxes of heat and moisture (and sometimes the surface stress) result from the effect of the wind on the ocean surface) before these fluxes are imposed on the model ocean and atmosphere. Because these adjustments are pre-computed and therefore independent of the coupled model integration, they are uncorrelated with the anomalies that develop during the integration. Chapter 8 of this report concludes that most models used in this report (Fourth Assessment Report AOGCMs) do not use flux adjustments, and that in general, fewer models use them.

* Forest A vegetation type dominated by trees. Many definitions of the term forest are in use throughout the world, reflecting wide differences in biophysical conditions, social structure and economics. For a discussion of the term forest and related terms such as afforestation, reforestation and deforestation see the IPCC Report on Land Use, Land-Use Change and Forestry (IPCC, 2000). See also the Report on Definitions and Methodological Options to Inventory Emissions from Direct Human-induced Degradation of Forests and Devegetation of Other Vegetation Types (IPCC, 2003).

* Fossil fuel emissions Emissions of greenhouse gases (in particular carbon dioxide) resulting from the combustion of fuels from fossil carbon deposits such as oil, gas and coal.

* Framework Convention on Climate Change See United Nations Framework Convention on Climate Change (UNFCCC).

* Free atmosphere The atmospheric layer that is negligibly affected by friction against the Earth’s surface, and which is above the atmospheric boundary layer.

* Frozen ground Soil or rock in which part or all of the pore water is frozen (Van Everdingen, 1998). Frozen ground includes permafrost. Ground that freezes and thaws annually is called seasonally frozen ground.

* General circulation The large-scale motions of the atmosphere and the ocean as a consequence of differential heating on a rotating Earth, which tend to restore the energy balance of the system through transport of heat and momentum.

* General Circulation Model (GCM) See Climate model.

* Geoid The equipotential surface (i.e., having the same gravity potential at each point) that best fits the mean sea level (see relative sea level) in the absence of astronomical tides; ocean circulations; hydrological, cryospheric and atmospheric effects; Earth rotation variations and polar motion; nutation and precession; tectonics and other effects such as post-glacial rebound. The geoid is global and extends over continents, oceans and ice sheets, and at present includes the effect of the permanent tides (zero-frequency gravitational effect from the Sun and the Moon). It is the surface of reference for astronomical observations, geodetic levelling, and for ocean, hydrological, glaciological and climate modelling. In practice, there exist various operational definitions of the geoid, depending on the way the time-variable effects mentioned above are modelled.

* Geostrophic winds or currents A wind or current that is in balance with the horizontal pressure gradient and the Coriolis force, and thus is outside of the influence of friction. Thus, the wind or current is directly parallel to isolars and its speed is inversely proportional to the spacing of the isobaric contours.

* Glacial isostatic adjustment See Post-glacial rebound.

* Glacier A mass of land ice that flows downhill under gravity (through internal deformation and/or sliding at the base) and is constrained by internal stress and friction at the base and sides. A glacier is maintained by accumulation of snow at high altitudes, balanced by melting at low altitudes or discharge into the sea. See Equilibrium line; Mass balance.

* Global dimming Global dimming refers to perceived widespread reduction of solar radiation received at the surface of the Earth from about the year 1961 to around 1990.

* Global surface temperature The global surface temperature is an estimate of the global mean surface air temperature. However, for changes over time, only anomalies, as departures from a climatology, are used, most commonly based on the area-weighted global average of the sea surface temperature anomaly and land surface air temperature anomaly.

* Global Warming Potential (GWP) An index, based upon radiative properties of well-mixed greenhouse gases, measuring the radiative forcing of a unit mass of a given well-mixed greenhouse gas in the present-day atmosphere integrated over a chosen time horizon, relative to that of carbon dioxide. The GWP represents the combined effect of the differing times these gases remain in the atmosphere and their relative effectiveness in absorbing outgoing thermal infrared radiation. The Kyoto Protocol is based on GWPs from pulse emissions over a 100-year time frame.

* Greenhouse effect Greenhouse gases effectively absorb thermal infrared radiation, emitted by the Earth’s surface, by the atmosphere itself due to the same gases, and by clouds. Atmospheric radiation is emitted to all sides, including downward to the Earth’s surface. Thus, greenhouse gases trap heat within the surface-troposphere system. This is called the greenhouse effect. Thermal infrared radiation in the troposphere is strongly coupled to the temperature of the atmosphere at the altitude at which it is emitted. In the troposphere, the temperature generally decreases with height. Effectively, infrared radiation emitted to space originates from an altitude with a temperature of, on average, −19°C, in balance with the net incoming solar radiation, whereas the Earth’s surface is kept at a much higher temperature of, on average, +14°C. An increase in the concentration of greenhouse gases leads to an increased infrared opacity of the atmosphere, and therefore to an effective radiation into space from a higher altitude at a lower temperature. This causes a radiative forcing that leads to an enhancement of the greenhouse effect, the so-called enhanced greenhouse effect.
Greenhouse gases (GHGs) are those gaseous constituents of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at specific wavelengths within the spectrum of thermal infrared radiation emitted by the Earth’s surface, the atmosphere itself, and by clouds. This property causes the greenhouse effect. Water vapour (H₂O), carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄) and ozone (O₃) are the primary greenhouse gases in the Earth’s atmosphere. Moreover, there are a number of entirely human-made greenhouse gases in the atmosphere, such as the halocarbons and other chlorine- and bromine-containing substances, dealt with under the Montreal Protocol. Beside CO₂, N₂O and CH₄, the Kyoto Protocol deals with the greenhouse gases sulphur hexafluoride (SF₆), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs).

Gross Primary Production (GPP) The amount of energy fixed from the atmosphere through photosynthesis.

Ground ice A general term referring to all types of ice contained in freezing and seasonally frozen ground and permafrost (Van Everdingen, 1998).

Ground temperature The temperature of the ground near the surface (often within the first 10 cm). It is often called soil temperature.

Grounding line/zone The junction between a glacier or ice sheet and ice shelf; the place where ice starts to float.

Gyre Basin-scale ocean horizontal circulation pattern with slow flow circulating around the ocean basin, closed by a strong and narrow (100–200 km wide) boundary current on the western side. The subtropical gyres in each ocean are associated with high pressure in the centre of the gyres; the subpolar gyres are associated with low pressure.

Hadley Circulation A direct, thermally driven overturning cell in the atmosphere consisting of poleward flow in the upper troposphere, subsiding air into the subtropical anticyclones, return flow as part of the trade winds near the surface, and with rising air near the equator in the so-called Inter-Tropical Convergence Zone.

Halocarbons A collective term for the group of partially halogenated organic species, including the chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), halons, methyl chloride, methyl bromide, etc. Many of the halocarbons have large Global Warming Potentials. The chlorine- and bromine-containing halocarbons are also involved in the depletion of the ozone layer.

Halosteric See Sea level change.

HCFC See Halocarbons.

HFC See Halocarbons.

Heterotrophic respiration The conversion of organic matter to carbon dioxide by organisms other than plants.

Holocene The Holocene geological epoch is the latter of two Quaternary epochs, extending from about 11.6 ka to and including the present.

Hydrosphere The component of the climate system comprising liquid surface and subterranean water, such as oceans, seas, rivers, fresh water lakes, underground water, etc.

Ice age An ice age or glacial period is characterised by a long-term reduction in the temperature of the Earth’s climate, resulting in growth of continental ice sheets and mountain glaciers (glaciation).

Ice cap A dome shaped ice mass, usually covering a highland area, which is considerably smaller in extent than an ice sheet.

Ice core A cylinder of ice drilled out of a glacier or ice sheet.

Ice sheet A mass of land ice that is sufficiently deep to cover most of the underlying bedrock topography, so that its shape is mainly determined by its dynamics (the flow of the ice as it deforms internally and/or slides at its base). An ice sheet flows outward from a high central ice plateau with a small average surface slope. The margins usually slope more steeply, and most ice is discharged through fast-flowing ice streams or outlet glaciers, in some cases into the sea or into ice shelves floating on the sea. There are only three large ice sheets in the modern world, one on Greenland and two on Antarctica, the East and West Antarctic Ice Sheets, divided by the Transantarctic Mountains. During glacial periods there were others.

Ice shelf A floating slab of ice of considerable thickness extending from the coast (usually of great horizontal extent with a level or gently sloping surface), often filling embayments in the coastline of the ice sheets. Nearly all ice shelves are in Antarctica, where most of the ice discharged seaward flows into ice shelves.

Ice stream A stream of ice flowing faster than the surrounding ice sheet. It can be thought of as a glacier flowing between walls of slower-moving ice instead of rock.

Indirect aerosol effect Aerosols may lead to an indirect radiative forcing of the climate system through acting as cloud condensation nuclei or modifying the optical properties and lifetime of clouds. Two indirect effects are distinguished:

- **Cloud albedo effect** A radiative forcing induced by an increase in anthropogenic aerosols that cause an initial increase in droplet concentration and a decrease in droplet size for fixed liquid water content, leading to an increase in cloud albedo. This effect is also known as the first indirect effect or Twomey effect.

- **Cloud lifetime effect** A forcing induced by an increase in anthropogenic aerosols that cause a decrease in droplet size, reducing the precipitation efficiency, thereby modifying the liquid water content, cloud thickness and cloud life time. This effect is also known as the second indirect effect or Albrecht effect.

Apart from these indirect effects, aerosols may have a semi-direct effect. This refers to the absorption of solar radiation by absorbing aerosol, which heats the air and tends to increase the static stability relative to the surface. It may also cause evaporation of cloud droplets.

Industrial revolution A period of rapid industrial growth with far-reaching social and economic consequences, beginning in Britain during the second half of the eighteenth century and spreading to Europe and later to other countries including the United States. The invention of the steam engine was an important trigger of this development. The industrial revolution marks the beginning of a strong increase in the use of fossil fuels and emission of, in particular, fossil carbon dioxide. In this report the terms pre-industrial and industrial refer, somewhat arbitrarily, to the periods before and after 1750, respectively.

Infrared radiation See Thermal infrared radiation.
Insolation The amount of solar radiation reaching the Earth by latitude and by season. Usually insolation refers to the radiation arriving at the top of the atmosphere. Sometimes it is specified as referring to the radiation arriving at the Earth’s surface. See also: Total Solar Irradiance.

Interglacials The warm periods between ice age glaciations. The previous interglacial, dated approximately from 129 to 116 ka, is referred to as the Last Interglacial (AMS, 2000)

Internal variability See Climate variability.

Inter-Tropical Convergence Zone (ITCZ) The Inter-Tropical Convergence Zone is an equatorial zonal belt of low pressure near the equator where the northeast trade winds meet the southeast trade winds. As these winds converge, moist air is forced upward, resulting in a band of heavy precipitation. This band moves seasonally.

Isostatic or Isostasy Isostasy refers to the way in which the lithosphere and mantle respond visco-elastically to changes in surface loads. When the loading of the lithosphere and/or the mantle is changed by alterations in land ice mass, ocean mass, sedimentation, erosion or mountain building, vertical isostatic adjustment results, in order to balance the new load.

Kyoto Protocol The Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC) was adopted in 1997 in Kyoto, Japan, at the Third Session of the Conference of the Parties (COP) to the UNFCCC. It contains legally binding commitments, in addition to those included in the UNFCCC. Countries included in Annex B of the Protocol (most Organisation for Economic Cooperation and Development countries and countries with economies in transition) agreed to reduce their radiative forcings (e.g., a gaseous compound in the atmosphere) and the total rate of removal S from the reservoir: \(T = M / S \). For each removal process, separate turnover times can be defined. In soil carbon biology, this is referred to as Mean Residence Time.

Land use and Land use change Land use refers to the total of arrangements, activities and inputs undertaken in a certain land cover type (a set of human actions). The term land use is also used in the sense of the social and economic purposes for which land is managed (e.g., grazing, timber extraction and conservation). Land use change refers to a change in the use or management of land by humans, which may lead to a change in land cover. Land cover and land use change may have an impact on the surface albedo, evapotranspiration, sources and sinks of greenhouse gases, or other properties of the climate system and may thus have a radiative forcing and/or other impacts on climate, locally or globally. See also the IPCC Report on Land Use, Land-Use Change, and Forestry (IPCC, 2000).

La Niña See El Niño-Southern Oscillation.

Land surface air temperature The surface air temperature as measured in well-ventilated screens over land at 1.5 m above the ground.

Lapse rate The rate of change of an atmospheric variable, usually temperature, with height. The lapse rate is considered positive when the variable decreases with height.

Last Glacial Maximum (LGM) The Last Glacial Maximum refers to the time of maximum extent of the ice sheets during the last glaciation, approximately 21 ka. This period has been widely studied because the radiative forcings and boundary conditions are relatively well known and because the global cooling during that period is comparable with the projected warming over the 21st century.

Last Interglacial (LIG) See Interglacial.

Latent heat flux The flux of heat from the Earth’s surface to the atmosphere that is associated with evaporation or condensation of water vapour at the surface; a component of the surface energy budget.

Level of Scientific Understanding (LOSU) This is an index on a 5-step scale (high, medium, medium-low, low and very low) designed to characterise the degree of scientific understanding of the radiative forcing agents that affect climate change. For each agent, the index represents a subjective judgement about the evidence for the physical/chemical mechanisms determining the forcing and the consensus surrounding the quantitative estimate and its uncertainty.

Lifetime Lifetime is a general term used for various time scales characterising the rate of processes affecting the concentration of trace gases. The following lifetimes may be distinguished:

- **Turnover time** \((T) \) (also called global atmospheric lifetime) is the ratio of the mass M of a reservoir to the atmospheric lifetime (atmosphere) and the total rate of removal S from the reservoir: \(T = M / S \). For each removal process, separate turnover times can be defined. In soil carbon biology, this is referred to as Mean Residence Time.

- **Adjustment time or response time** \((T_r) \) is the time scale characterising the decay of an instantaneous pulse input into the reservoir. The term adjustment time is also used to characterise the adjustment of the mass of a reservoir following a step change in the source strength. Half-life or decay constant is used to quantify a first-order exponential decay process. See response time for a different definition pertinent to climate variations.

The term lifetime is sometimes used, for simplicity, as a surrogate for adjustment time.

In simple cases, where the global removal of the compound is directly proportional to the total mass of the reservoir, the adjustment time equals the turnover time: \(T = T_r \). An example is CPC-11, which is removed from the atmosphere only by photochemical processes in the stratosphere. In more complicated cases, where several reservoirs are involved or where the removal is not proportional to the total mass, the equality \(T = T_r \), no longer holds. Carbon dioxide (CO\(_2\)) is an extreme example. Its turnover time is only about four years because of the rapid exchange between the atmosphere and the ocean and terrestrial biota. However, a large part of that CO\(_2\) is returned to the atmosphere within a few years. Thus, the adjustment time of CO\(_2\) in the atmosphere is actually determined by the rate of removal of carbon from the surface layer of the oceans into its deeper layers. Although an approximate value of 100 years may be given for the adjustment time of CO\(_2\) in the atmosphere, the actual adjustment is faster initially and slower later on. In the case of methane (CH\(_4\)), the adjustment time is different from the turnover time because the removal is mainly through a chemical reaction with the hydroxyl radical OH, the concentration of which itself depends on the CH\(_4\) concentration. Therefore, the CH\(_4\) removal rate S is not proportional to its total mass M.

Likelihood The likelihood of an occurrence, an outcome or a result, where this can be estimated probabilistically, is expressed in this report using a standard terminology, defined in Box 1.1. See also Uncertainty; Confidence.

Lithosphere The upper layer of the solid Earth, both continental and oceanic, which comprises all crustal rocks and the cold, mainly elastic part of the uppermost mantle. Volcanic activity, although part of the lithosphere, is not considered as part of the climate system, but acts as an external forcing factor. See Isostatic.

Little Ice Age (LIA) An interval between approximately AD 1400 and 1900 when temperatures in the Northern Hemisphere were generally colder than today’s, especially in Europe.
Mass balance (of glaciers, ice caps or ice sheets) The balance between the mass input to the ice body (accumulation) and the mass loss (ablation, iceberg calving). Mass balance terms include the following:

- **Specific mass balance**: net mass loss or gain over a hydrological cycle at a point on the surface of a glacier.
- **Total mass balance** (of the glacier): The specific mass balance spatially integrated over the entire glacier area; the total mass a glacier gains or loses over a hydrological cycle.

Mean specific mass balance: The total mass balance per unit area of the glacier. If surface is specified (specific surface mass balance, etc.) then ice flow contributions are not considered; otherwise, mass balance includes contributions from ice flow and iceberg calving.

The specific surface mass balance is positive in the accumulation area and negative in the ablation area.

Mean sea level See **Relative sea level**.

Medieval Warm Period (MWP) An interval between AD 1000 and 1300 in which some Northern Hemisphere regions were warmer than during the Little Ice Age that followed.

Meridional Overturning Circulation (MOC) Meridional (north-south) overturning circulation in the ocean quantified by zonal (east-west) sums of mass transports in depth or density layers. In the North Atlantic, away from the subpolar regions, the MOC (which is in principle an observable quantity) is often identified with the Thermohaline Circulation (THC), which is a conceptual interpretation. However, it must be borne in mind that the MOC can also include shallower, wind-driven overturning cells such as occur in the upper ocean in the tropics and sub tropics, in which warm (light) waters moving poleward are transformed to slightly denser waters and subducted equatorward at deeper levels.

Metadata Information about meteorological and climatological data concerning how and when they were measured, their quality, known problems and other characteristics.

Metric A consistent measurement of a characteristic of an object or activity that is otherwise difficult to quantify.

Mitigation A human intervention to reduce the sources or enhance the sinks of greenhouse gases.

Mixing ratio See **Mole fraction**.

Model hierarchy See **Climate model** (spectrum or hierarchy).

Modes of climate variability Natural variability of the climate system, in particular on seasonal and longer time scales, predominantly occurs with preferred spatial patterns and time scales, through the dynamical characteristics of the atmospheric circulation and through interactions with the land and ocean surfaces. Such patterns are often called regimes, modes or teleconnections. Examples are the North Atlantic Oscillation (NAO), the Pacific-North American pattern (PNA), the El Niño-Southern Oscillation (ENSO), the Northern Annular Mode (NAM; previously called Arctic Oscillation, AO) and the Southern Annular Mode (SAM; previously called the Antarctic Oscillation, AAO).

Many of the prominent modes of climate variability are discussed in section 3.6. See also **Patterns of climate variability**.

Mole fraction Mole fraction, or mixing ratio, is the ratio of the number of moles of a constituent in a given volume to the total number of moles of all constituents in that volume. It is usually reported for dry air. Typical values for long-lived greenhouse gases are in the order of μmol mol⁻¹ (parts per million: ppm), nmol mol⁻¹ (parts per billion: ppb), and fmol mol⁻¹ (parts per trillion: ppt). Mole fraction differs from **volume mixing ratio**, often expressed in ppmv etc., by the corrections for non-ideality of gases. This correction is significant relative to measurement precision for many greenhouse gases. (Schwartz and Warneck, 1995).

Monsoon A monsoon is a tropical and subtropical seasonal reversal in both the surface winds and associated precipitation, caused by differential heating between a continental-scale land mass and the adjacent ocean. Monsoon rains occur mainly over land in summer.

Montreal Protocol The Montreal Protocol on Substances that Deplete the Ozone Layer was adopted in Montreal in 1987, and subsequently adjusted and amended in London (1990), Copenhagen (1992), Vienna (1995), Montreal (1997) and Beijing (1999). It controls the consumption and production of chlorine- and bromine-containing chemicals that destroy stratospheric ozone, such as chlorofluorocarbons, methyl chloroform, carbon tetrachloride and many others.

Microwave Sounding Unit (MSU) A satelliteborne microwave sounder that estimates the temperature of thick layers of the atmosphere by measuring the thermal emission of oxygen molecules from a complex of emission lines near 60 GHz. A series of nine MSUs began making this kind of measurement in late 1978. Beginning in mid 1998, a follow-on series of instruments, the Advanced Microwave Sounding Units (AMSUs), began operation.

MSU See **Microwave Sounding Unit**.

Nonlinearity A process is called nonlinear when there is no simple proportional relation between cause and effect. The climate system contains many such nonlinear processes, resulting in a system with a potentially very complex behaviour. Such complexity may lead to abrupt climate change. See also **Chaos; Predictability**.

North Atlantic Oscillation (NAO) The North Atlantic Oscillation consists of opposing variations of barometric pressure near Iceland and near the Azores. It therefore corresponds to fluctuations in the strength of the main westerly winds across the Atlantic into Europe, and thus to fluctuations in the embedded cyclones with their associated frontal systems. See NAM Index, Box 3.4.

Northern Annular Mode (NAM) A winter fluctuation in the amplitude of a pattern characterised by low surface pressure near Iceland and strong mid-latitude westerlies. The NAM has links with the northern polar vortex into the stratosphere. Its pattern has a bias to the North Atlantic and has a large correlation with the North Atlantic Oscillation. See NAM Index, Box 3.4.

Ocean acidification A decrease in the pH of sea water due to the uptake of anthropogenic carbon dioxide.

Ocean heat uptake efficiency This is a measure (W m⁻² °C⁻¹) of the rate at which heat storage by the global ocean increases as global surface temperature rises. It is a useful parameter for climate change experiments in which the radiative forcing is changing monotonically, when it can be compared with the climate sensitivity parameter to gauge the relative importance of climate response and ocean heat uptake in determining the rate of climate change. It can be estimated from a 1% yr⁻¹ atmospheric carbon dioxide increase experiment as the ratio of the global average top-of-atmosphere net downward radiative flux to the transient climate response (see **climate sensitivity**).

Organic aerosol Aerosol particles consisting predominantly of organic compounds, mainly carbon, hydrogen, oxygen and lesser amounts of other elements. (Charlson and Heintzenberg, 1995, p. 405). See **Carbonaceous aerosol**.
Ozone Ozone, the triatomic form of oxygen (O_3), is a gaseous atmospheric constituent. In the troposphere, it is created both naturally and by photochemical reactions involving gases resulting from human activities (smog). Tropospheric ozone acts as a greenhouse gas. In the stratosphere, it is created by the interaction between solar ultraviolet radiation and molecular oxygen (O_2). Stratospheric ozone plays a dominant role in the stratospheric radiative balance. Its concentration is highest in the ozone layer.

Ozone hole See Ozone layer.

Ozone layer The stratosphere contains a layer in which the concentration of ozone is greatest, the so-called ozone layer. The layer extends from about 12 to 40 km above the Earth’s surface. The ozone concentration reaches a maximum between about 20 and 25 km. This layer is being depleted by human emissions of chlorine and bromine compounds. Every year, during the Southern Hemisphere spring, a very strong depletion of the ozone layer takes place over the Antarctic region, caused by anthropogenic chlorine and bromine compounds in combination with the specific meteorological conditions of that region. This phenomenon is called the ozone hole. See Montreal Protocol.

Pacific decadal variability Coupled decadal-to-inter-decadal variability of the atmospheric circulation and underlying ocean in the Pacific Basin. It is most prominent in the North Pacific, where fluctuations in the strength of the winter Aleutian Low pressure system co-vary with North Pacific sea surface temperatures, and are linked to decadal variations in atmospheric circulation, sea surface temperatures and ocean circulation throughout the whole Pacific Basin. Such fluctuations have the effect of modulating the El Niño-Southern Oscillation cycle. Key measures of Pacific decadal variability are the North Pacific Index (NPI), the Pacific Decadal Oscillation (PDO) index and the Inter-decadal Pacific Oscillation (IPO) index, all defined in Box 3.4.

Pacific-North American (PNA) pattern An atmospheric large-scale wave pattern featuring a sequence of tropospheric high- and low-pressure anomalies stretching from the subtropical west Pacific to the east coast of North America. See PNA pattern index, Box 3.4.

Palaeoclimate Climate during periods prior to the development of measuring instruments, including historic and geologic time, for which only proxy climate records are available.

Parametrization In climate models, this term refers to the technique of representing processes that cannot be explicitly resolved at the spatial or temporal resolution of the model (sub-grid scale processes) by relationships between model-resolved larger-scale flow and the area- or time-averaged effect of such sub-grid scale processes.

Patterns of climate variability See Modes of climate variability.

Percentile A percentile is a value on a scale of one hundred that indicates the percentage of the data set values that is equal to or below it. The percentile is often used to estimate the extremes of a distribution. For example, the 90th (10th) percentile may be used to refer to the threshold for the upper (lower) extremes.

Permafrost Ground (soil or rock and included ice and organic material) that remains at or below 0°C for at least two consecutive years (Van Everdingen, 1998).

pH pH is a dimensionless measure of the acidity of water (or any solution) given by its concentration of hydrogen ions (H^+). pH is measured on a logarithmic scale where $pH = –\log_{10}(H^+)$. Thus, a pH decrease of 1 unit corresponds to a 10-fold increase in the concentration of H^+, or acidity.

Photosynthesis The process by which plants take carbon dioxide from the air (or bicarbonate in water) to build carbohydrates, releasing oxygen in the process. There are several pathways of photosynthesis with different responses to atmospheric carbon dioxide concentrations. See Carbon dioxide fertilization; C3 plants; C4 plants.

Plankton Microorganisms living in the upper layers of aquatic systems. A distinction is made between phytoplankton, which depend on photosynthesis for their energy supply, and zooplankton, which feed on phytoplankton.

Pleistocene The earlier of two Quaternary epochs, extending from the end of the Pliocene, about 1.8 Ma, until the beginning of the Holocene about 11.6 ka.

Pollen analysis A technique of both relative dating and environmental reconstruction, consisting of the identification and counting of pollen types preserved in peat, lake sediments and other deposits. See Proxy.

Post-glacial rebound The vertical movement of the land and sea floor following the reduction of the load of an ice mass, for example, since the Last Glacial Maximum (21 ka). The rebound is an isostatic land movement.

Precipitable water The total amount of atmospheric water vapour in a vertical column of unit cross-sectional area. It is commonly expressed in terms of the height of the water if completely condensed and collected in a vessel of the same unit cross section.

Precursors Atmospheric compounds that are not greenhouse gases or aerosols, but that have an effect on greenhouse gas or aerosol concentrations by taking part in physical or chemical processes regulating their production or destruction rates.

Predictability The extent to which future states of a system may be predicted based on knowledge of current and past states of the system. Since knowledge of the climate system’s past and current states is generally imperfect, as are the models that utilise this knowledge to produce a climate prediction, and since the climate system is inherently nonlinear and chaotic, predictability of the climate system is inherently limited. Even with arbitrarily accurate models and observations, there may still be limits to the predictability of such a nonlinear system (AMS, 2000)

Pre-industrial See Industrial revolution.

Probability Density Function (PDF) A probability density function is a function that indicates the relative chances of occurrence of different outcomes of a variable. The function integrates to unity over the domain for which it is defined and has the property that the integral over a sub-domain equals the probability that the outcome of the variable lies within that sub-domain. For example, the probability that a temperature anomaly defined in a particular way is greater than zero is obtained from its PDF by integrating the probability that a temperature anomaly defined in a particular way lies below it. The percentile is often used to estimate the extremes of a distribution. For example, the 90th (10th) percentile may be used to refer to the threshold for the upper (lower) extremes.

Projection A projection is a potential future evolution of a quantity or set of quantities, often computed with the aid of a model.
Projections are distinguished from predictions in order to emphasize that projections involve assumptions concerning, for example, future socioeconomic and technological developments that may or may not be realised, and are therefore subject to substantial uncertainty. See also Climate projection; Climate prediction.

Proxy A proxy climate indicator is a local record that is interpreted, using physical and biophysical principles, to represent some combination of climate-related variations back in time. Climate-related data derived in this way are referred to as proxy data. Examples of proxies include pollen analysis, tree ring records, characteristics of corals and various data derived from ice cores.

Quaternary The period of geological time following the Tertiary (65 Ma to 1.8 Ma). Following the current definition (which is under revision at present) the Quaternary extends from 1.8 Ma until the present. It is formed of two epochs, the Pleistocene and the Holocene.

Radiative forcing Radiative forcing is the change in the net, downward minus upward, irradiance (expressed in W m⁻²) at the tropopause due to a change in an external driver of climate change, such as, for example, a change in the concentration of carbon dioxide or the output of the Sun. Radiative forcing is computed with all tropospheric properties held fixed at their unperturbed values, and after allowing for stratospheric temperatures, if perturbed, to readjust to radiative-dynamical equilibrium. Radiative forcing is called instantaneous if no change in stratospheric temperature is accounted for. For the purposes of this report, radiative forcing is further defined as the change relative to the year 1750 and, unless otherwise noted, refers to a global and annual average value. Radiative forcing is not to be confused with cloud radiative forcing, a similar terminology for describing an unrelated measure of the impact of clouds on the irradiance at the top of the atmosphere.

Radiative forcing scenario A plausible representation of the future development of radiative forcing associated, for example, with changes in atmospheric composition or land use change, or with external factors such as variations in solar activity. Radiative forcing scenarios can be used as input into simplified climate models to compute climate projections.

Rapid climate change See Abrupt climate change.

Reanalysis Reanalyses are atmospheric and oceanic analyses of temperature, wind, current, and other meteorological and oceanographic quantities, created by processing past meteorological and oceanographic data using fixed state-of-the-art weather forecasting models and data assimilation techniques. Using fixed data assimilation avoids effects from the changing analysis system that occurs in operational analyses. Although continuity is improved, global reanalyses still suffer from changing coverage and biases in the observing systems.

Reconstruction The use of climate indicators to help determine (generally past) climates.

Reforestation Planting of forests on lands that have previously contained forests but that have been converted to some other use. For a discussion of the term forest and related terms such as afforestation, reforestation and deforestation, see the IPCC Report on Land Use, Land-Use Change and Forestry (IPCC, 2000). See also the Report on Definitions and Methodological Options to Inventory Emissions from Direct Human-induced Degradation of Forests and Devegetation of Other Vegetation Types (IPCC, 2003)

Regime A regime is preferred states of the climate system, often representing one phase of dominant patterns or modes of climate variability.

Region A region is a territory characterised by specific geographical and climatological features. The climate of a region is affected by regional and local scale forcings like topography, land use characteristics, lakes, etc., as well as remote influences from other regions. See Teleconnection.

Relative sea level Sea level measured by a tide gauge with respect to the land upon which it is situated. Mean sea level is normally defined as the average relative sea level over a period, such as a month or a year, long enough to average out transients such as waves and tides. See Sea level change.

Reservoir A component of the climate system, other than the atmosphere, which has the capacity to store, accumulate or release a substance of concern, for example, carbon, a greenhouse gas or a precursor. Oceans, soils and forests are examples of reservoirs of carbon. Pool is an equivalent term (note that the definition of pool often includes the atmosphere). The absolute quantity of the substance of concern held within a reservoir at a specified time is called the stock.

Respiration The process whereby living organisms convert organic matter to carbon dioxide, releasing energy and consuming molecular oxygen.

Response time The response time or adjustment time is the time needed for the climate system or its components to re-equilibrate to a new state, following a forcing resulting from external and internal processes or feedbacks. It is very different for various components of the climate system. The response time of the troposphere is relatively short, from days to weeks, whereas the stratosphere reaches equilibrium on a time scale of typically a few months. Due to their large heat capacity, the oceans have a much longer response time: typically decades, but up to centuries or millennia. The response time of the strongly coupled surface-troposphere system is, therefore, slow compared to that of the stratosphere, and mainly determined by the oceans. The biosphere may respond quickly (e.g., to droughts), but also very slowly to imposed changes. See lifetime for a different definition of response time pertinent to the rate of processes affecting the concentration of trace gases.

Return period The average time between occurrences of a defined event (AMS, 2000).

Return value The highest (or, alternatively, lowest) value of a given variable, on average occurring once in a given period of time (e.g., in 10 years).

Scenario A plausible and often simplified description of how the future may develop, based on a coherent and internally consistent set of assumptions about driving forces and key relationships. Scenarios may be derived from projections, but are often based on additional information from other sources, sometimes combined with a narrative storyline. See also SRES scenarios; Climate scenario; Emission scenario.

Sea ice Any form of ice found at sea that has originated from the freezing of seawater. Sea ice may be discontinuous pieces (ice floes) or a motionless sheet attached to the coast (land-fast ice). Sea ice less than one year old is called first-year ice. Multi-year ice is sea ice that has survived at least one summer melt season.
Sea level change Sea level can change, both globally and locally, due to (i) changes in the shape of the ocean basins, (ii) changes in the total mass of water and (iii) changes in water density. Sea level changes induced by changes in water density are called **steric**. Density changes induced by temperature changes only are called **thermosteric**, while density changes induced by salinity changes are called **halosteric**. See also **Relative Sea Level; Thermal expansion**.

Sea level equivalent (SLE) The change in global average sea level that would occur if a given amount of water or ice were added to or removed from the oceans.

Seasonally frozen ground See **Frozen ground**.

Sea surface temperature (SST) The sea surface temperature is the temperature of the subsurface bulk temperature in the top few metres of the ocean, measured by ships, buoys and drifters. From ships, measurements of water samples in buckets were mostly switched in the 1940s to samples from engine intake water. Satellite measurements of skin temperature (uppermost layer; a fraction of a millimetre thick) in the infrared or the top centimetre or so in the microwave are also used, but must be adjusted to be compatible with the bulk temperature.

Sensible heat flux The flux of heat from the Earth’s surface to the **atmosphere** that is not associated with phase changes of water; a component of the surface energy budget.

Sequestration See **Uptake**.

Significant wave height The average height of the highest one-third of the wave heights (sea and swell) occurring in a particular time period.

Sink Any process, activity or mechanism that removes a **greenhouse gas**, an **aerosol** or a **precursor** of a greenhouse gas or aerosol from the **atmosphere**.

Slab-ocean model A simplified presentation in a **climate model** of the ocean as a motionless layer of water with a depth of 50 to 100 m. Climate models with a slab ocean can only be used for estimating the equilibrium response of climate to a given forcing, not the transient evolution of climate. See **Equilibrium and transient climate experiment**.

Snow line The lower limit of permanent snow cover, below which snow does not accumulate.

Soil moisture Water stored in or at the land surface and available for evaporation.

Soil temperature See **Ground temperature**.

Solar activity The Sun exhibits periods of high activity observed in numbers of **sunspots**, as well as radiative output, magnetic activity and emission of high-energy particles. These variations take place on a range of time scales from millions of years to minutes. See **Solar cycle**.

Solar (‘11 year’) cycle A quasi-regular modulation of **solar activity** with varying amplitude and a period of between 9 and 13 years.

Solar radiation Electromagnetic radiation emitted by the Sun. It is also referred to as **shortwave radiation**. Solar radiation has a distinctive range of wavelengths (spectrum) determined by the temperature of the Sun, peaking in visible wavelengths. See also: **Thermal infrared radiation, Insolation**.

Soot Particles formed during the quenching of gases at the outer edge of flames of organic vapours, consisting predominantly of carbon, with lesser amounts of oxygen and hydrogen present as carboxyl and phenolic groups and exhibiting an imperfect graphitic structure. See **Black carbon; Charcoal** (Charlson and Heintzenberg, 1995, p. 406).

Source Any process, activity or mechanism that releases a **greenhouse gas**, an **aerosol** or a **precursor** of a greenhouse gas or aerosol into the **atmosphere**.

Southern Annular Mode (SAM) The fluctuation of a pattern like the **Northern Annular Mode**, but in the Southern Hemisphere. See **SAM Index, Box 3.4**.

Southern Oscillation See **El Niño-Southern Oscillation (ENSO)**.

Spatial and temporal scales Climate may vary on a large range of spatial and temporal scales. Spatial scales may range from local (less than 100,000 km²), through regional (100,000 to 10 million km²) to continental (10 to 100 million km²). Temporal scales may range from seasonal to geological (up to hundreds of millions of years).

SRES scenarios SRES scenarios are **emission scenarios** developed by Nakićenović and Swart (2000) and used, among others, as a basis for some of the **climate projections** shown in Chapter 10 of this report. The following terms are relevant for a better understanding of the structure and use of the set of SRES scenarios:

- **Scenario family** Scenarios that have a similar demographic, societal, economic and technical change storyline. Four scenario families comprise the SRES scenario set: A1, A2, B1 and B2.

- **Illustrative Scenario** A scenario that is illustrative for each of the six scenario groups reflected in the Summary for Policymakers of Nakićenović and Swart (2000). They include four revised **scenario markers** for the scenario groups A1B, A2, B1, B2, and two additional scenarios for the A1FI and A1T groups. All scenario groups are equally sound.

- **Marker Scenario** A scenario that was originally posted in draft form on the SRES website to represent a given scenario family. The choice of markers was based on which of the initial quantifications best reflected the storyline, and the features of specific models. Markers are no more likely than other scenarios, but are considered by the SRES writing team as illustrative of a particular storyline. They are included in revised form in Nakićenović and Swart (2000). These scenarios received the closest scrutiny of the entire writing team and via the SRES open process. Scenarios were also selected to illustrate the other two scenario groups.

- **Storyline** A narrative description of a scenario (or family of scenarios), highlighting the main scenario characteristics, relationships between key driving forces and the dynamics of their evolution.

- **Steric** See **Sea level change**.

- **Stock** See **Reservoir**.

Storm surge The temporary increase, at a particular locality, in the height of the sea due to extreme meteorological conditions (low atmospheric pressure and/or strong winds). The storm surge is defined as being the excess above the level expected from the tidal variation alone at that time and place.
Storm tracks Originally, a term referring to the tracks of individual cyclonic weather systems, but now often generalised to refer to the regions where the main tracks of extratropical disturbances occur as sequences of low (cyclonic) and high (anticyclonic) pressure systems.

Stratosphere The highly stratified region of the atmosphere above the troposphere extending from about 10 km (ranging from 9 km at high latitudes to 16 km in the tropics on average) to about 50 km altitude. Although the line between stratosphere and troposphere is not sharp, it is generally taken to occur at the tropopause, the layer where the temperature gradient in the vertical changes sign.

Subduction Ocean process in which surface waters enter the ocean interior from the surface mixed layer through Ekman pumping and lateral advection. The latter occurs when surface waters are advedcted to a region where the local surface layer is less dense and therefore must slide below the surface layer, usually with no change in density.

Sunspots Small dark areas on the Sun. The number of sunspots is higher during periods of high solar activity, and varies in particular with the solar cycle.

Surface layer See Atmospheric boundary layer.

Surface temperature See Global surface temperature; Ground temperature; Land surface air temperature; Sea surface temperature.

Teleconnection A connection between climate variations over widely separated parts of the world. In physical terms, teleconnections are often a consequence of large-scale wave motions, whereby energy is transferred from source regions along preferred paths in the atmosphere.

Thermal expansion In connection with sea level, this refers to the increase in volume (and decrease in density) that results from warming water. A warming of the ocean leads to an expansion of the ocean volume and hence an increase in sea level. See Sea level change.

Thermal infrared radiation Radiation emitted by the Earth’s surface, the atmosphere and the clouds. It is also known as terrestrial or longwave radiation, and is to be distinguished from the near-infrared radiation that is part of the solar spectrum. Infrared radiation, in general, has a distinctive range of wavelengths (spectrum) longer than the wavelength of the red colour in the visible part of the spectrum. The spectrum of thermal infrared radiation is practically distinct from that of shortwave or solar radiation because of the difference in temperature between the Sun and the Earth-atmosphere system.

Thermocline The layer of maximum vertical temperature gradient in the ocean, lying between the surface ocean and the abyssal ocean. In subtropical regions, its source waters are typically surface waters at higher latitudes that have subducted and moved equatorward. At high latitudes, it is sometimes absent, replaced by a halocline, which is a layer of maximum vertical salinity gradient.

Thermohaline circulation (THC) Large-scale circulation in the ocean that transforms low-density upper ocean waters to higher-density intermediate and deep waters and returns those waters back to the upper ocean. The circulation is asymmetric, with conversion to dense waters in restricted regions at high latitudes and the return to the surface involving slow upwelling and diffusive processes over much larger geographic regions. The THC is driven by high densities at or near the surface, caused by cold temperatures and/or high salinities, but despite its suggestive though common name, is also driven by mechanical forces such as wind and tides. Frequently, the name THC has been used synonymously with Meridional Overturning Circulation.

Thermokarst The process by which characteristic landforms result from the thawing of ice-rich permafrost or the melting of massive ground ice (Van Everdingen, 1998).

Thermometric See Sea level change.

Tide gauge A device at a coastal location (and some deep-sea locations) that continuously measures the level of the sea with respect to the adjacent land. Time averaging of the sea level so recorded gives the observed secular changes of the relative sea level.

Total solar irradiance (TSI) The amount of solar radiation received outside the Earth’s atmosphere on a surface normal to the incident radiation, and at the Earth’s mean distance from the Sun. Reliable measurements of solar radiation can only be made from space and the precise record extends back only to 1978. The generally accepted value is 1,368 W m⁻² with an accuracy of about 0.2%. Variations of a few tenths of a percent are common, usually associated with the passage of sunspots across the solar disk. The solar cycle variation of TSI is of the order of 0.1% (AMS, 2000). See also Insolation.

Transient climate response See Climate sensitivity.

Tree rings Concentric rings of secondary wood evident in a cross-section of the stem of a woody plant. The difference between the dense, small-celled late wood of one season and the wide-celled early wood of the following spring enables the age of a tree to be estimated, and the ring widths or density can be related to climate parameters such as temperature and precipitation. See Proxy.

Trend In this report, the word trend designates a change, generally monotonic in time, in the value of a variable.

Tropopause The boundary between the troposphere and the stratosphere.

Troposphere The lowest part of the atmosphere, from the surface to about 10 km in altitude at mid-latitudes (ranging from 9 km at high latitudes to 16 km in the tropics on average), where clouds and weather phenomena occur. In the troposphere, temperatures generally decrease with height.

Turnover time See Lifetime.

Uncertainty An expression of the degree to which a value (e.g., the future state of the climate system) is unknown. Uncertainty can result from lack of information or from disagreement about what is known or even knowable. It may have many types of sources, from quantifiable errors in the data to ambiguously defined concepts or terminology, or uncertain projections of human behaviour. Uncertainty can therefore be represented by quantitative measures, for example, a range of values calculated by various models, or by qualitative statements, for example, reflecting the judgement of a team of experts (see Moss and Schneider, 2000; Manning et al., 2004). See also Likelihood; Confidence.

United Nations Framework Convention on Climate Change (UNFCCC) The Convention was adopted on 9 May 1992 in New York and signed at the 1992 Earth Summit in Rio de Janeiro by more than 150 countries and the European Community. Its ultimate objective is the ‘stabilisation of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system’. It contains commitments for all Parties. Under the Convention, Parties included in Annex I (all OECD
countries and countries with economies in transition) aim to return greenhouse gas emissions not controlled by the Montreal Protocol to 1990 levels by the year 2000. The convention entered in force in March 1994. See Kyoto Protocol.

Uptake The addition of a substance of concern to a reservoir. The uptake of carbon containing substances, in particular carbon dioxide, is often called (carbon) sequestration.

Urban heat island (UHI) The relative warmth of a city compared with surrounding rural areas, associated with changes in runoff, the concrete jungle effects on heat retention, changes in surface albedo, changes in pollution and aerosols, and so on.

Ventilation The exchange of ocean properties with the atmospheric surface layer such that property concentrations are brought closer to equilibrium values with the atmosphere (AMS, 2000).

Volume mixing ratio See Mole fraction.

Walker Circulation Direct thermally driven zonal overturning circulation in the atmosphere over the tropical Pacific Ocean, with rising air in the western and sinking air in the eastern Pacific.

Water mass A volume of ocean water with identifiable properties (temperature, salinity, density, chemical tracers) resulting from its unique formation process. Water masses are often identified through a vertical or horizontal extremum of a property such as salinity.

Younger Dryas A period 12.9 to 11.6 kya, during the deglaciation, characterised by a temporary return to colder conditions in many locations, especially around the North Atlantic.

REFERENCES

IPCC, 2003: *Definitions and Methodological Options to Inventory Emissions from Direct Human-Induced Degradation of Forests and Degeneration of Other Vegetation Types* [Penman, J., et al. (eds.)]. The Institute for Global Environmental Strategies (IGES), Japan, 32 pp.

Annex II

Contributors to the IPCC WGI Fourth Assessment Report

ACHUTARAO, Krishna
Lawrence Livermore National Laboratory
USA

ADLER, Robert
National Aeronautics and Space Administration
USA

ALEXANDER, Lisa
Hadley Centre for Climate Prediction and Research, Met Office
UK, Australia, Ireland

ALEXANDERSSON, Hans
Swedish Meteorological and Hydrological Institute
Sweden

ALLAN, Richard
Environmental Systems Science Centre, University of Reading
UK

ALLEN, Myles
Climate Dynamics Group, Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford
UK

ALLEY, Richard B.
Department of Geosciences, Pennsylvania State University
USA

ALLISON, Ian
Australian Antarctic Division and Antarctic Climate and Ecosystems Cooperative Research Centre
Australia

AMBENJE, Peter
Kenya Meteorological Department
Kenya

AMMANN, Caspar
Climate and Global Dynamics Division, National Center for Atmospheric Research
USA

ANDRONOVA, Natalia
University of Michigan
USA

ANNAN, James
Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology
Japan, UK

ANTONOV, John
National Oceanic and Atmospheric Administration
USA, Russian Federation

ARBLASTER, Julie
National Center for Atmospheric Research and Bureau of Meteorology Research Center
Australia

ARCHER, David
University of Chicago
USA

ARORA, Vivek
Canadian Centre for Climate Modelling and Analysis, Environment Canada
Canada

ARRITT, Raymond
Iowa State University
USA

ARTALE, Vincenzo
Italian National Agency for New Technologies, Energy and the Environment (ENEA)
Italy

ARTAXO, Paulo
Instituto de Fisica, Universidade de Sao Paulo
Brazil

AUER, Ingeborg
Central Institute for Meteorology and Geodynamics
Austria

AUSTIN, John
National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory
USA

BAEDE, Alphonsus
Royal Netherlands Meteorological Institute (KNMI) and Ministry of Housing, Spatial Planning and the Environment
Netherlands

BAKER, David
National Center for Atmospheric Research
USA

BALDWIN, Mark P.
Northwest Research Associates
USA

BARNOLA, Jean-Marc
Laboratoire de Glaciologie et Géophysique de l’Environnement
France

BARRY, Roger
National Snow and Ice Data Center, University of Colorado
USA

BATES, Nicholas Robert
Bermuda Institute of Ocean Sciences
Bermuda

BAUER, Eva
Potsdam Institute for Climate Impact Research
Germany

BENESTAD, Rasmus
Norwegian Meteorological Institute
Norway

BENISTON, Martin
University of Geneva
Switzerland

BERGER, André
Université catholique de Louvain, Institut d’Astronomie et de Géophysique G. Lemaitre
Belgium

BERNTSEN, Terje
Centre for International Climate and Environmental Research (CICERO)
Norway

BERRY, Joseph A.
Carnegie Institute of Washington, Department of Global Ecology
USA

BETTS, Richard A.
Hadley Centre for Climate Prediction and Research, Met Office
UK

BIERCAMP, Joachim
Deutsches Klimarechenzentrum GmbH
Germany

BINDOFF, Nathaniel L.
Antarctic Climate and Ecosystems Cooperative Research Centre and CSIRO Marine and Atmospheric Research
Australia

BITZ, Cecilia
University of Washington
USA

BLATTER, Heinz
Institute for Atmospheric and Climate Science, ETH Zurich
Switzerland

BODEKER, Greg
National Institute of Water and Atmospheric Research
New Zealand

BOJARIU, Roxana
National Institute of Meteorology and Hydrology (NIMH)
Romania

BONAN, Gordon
National Center for Atmospheric Research
USA

Coordinating lead authors, lead authors, and contributing authors are listed alphabetically by surname.
Annex II

BONFILS, Céline
School of Natural Sciences, University of California, Merced
USA, France

BONY, Sandrine
Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace
France

BOONE, Aaron
CNRS CNRM at Meteo France
France, USA

BOONPRAGOB, Kansri
Department of Biology, Faculty of Science, Ramkhamhaeng University
Thailand

BOUCHER, Olivier
Hadley Centre for Climate Prediction and Research, Met Office
UK, France

BOUSQUET, Philippe
Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l’Environnement
France

BOX, Jason
Ohio State University
USA

BOYER, Tim
National Oceanic and Atmospheric Administration
USA

BRACONNOT, Pascale
Pascale Bracnot Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l’Environnement
France

BRADY, Esther
National Center for Atmospheric Research
USA

BRASSEUR, Guy
Earth and Sun Systems Laboratory, National Center for Atmospheric Research
USA, Germany

BRETHRONT, Christopher
Department of Atmospheric Sciences, University of Washington
USA

BRIFFA, Keith R.
Climatic Research Unit, School of Environmental Sciences, University of East Anglia
UK

BROCCOLI, Anthony J.
Rutgers University
USA

BROCKMANN, Patrick
Laboratoire des Sciences du Climat et de l’Environnement
France

BROMWICH, David
Byrd Polar Research Center, The Ohio State University
USA

BROVKIN, Victor
Potsdam Institute for Climate Impact Research
Germany, Russian Federation

BROWN, Ross
Environment Canada
Canada

BUJA, Lawrence
National Center for Atmospheric Research
USA

BUSUIOC, Aristita
National Meteorological Administration
Romania

CADULE, Patricia
Institut Pierre Simon Laplace
France

CAI, Wenju
CSIRO Marine and Atmospheric Research
Australia

CAMILLONI, Inés
Universidad de Buenos Aires, Centro de Investigaciones del Mar y la Atmósfera
Argentina

CANADELL, Josep
Global Carbon Project, CSIRO
Australia

CARRASCO, Jorge
Dirección Meteorologica de Chile y Centro de Estudios Científicos
Chile

CASSOU, Christophe
Centre National de Recherche Scientifique, Centre European de Recherche et de Formation Avancee en Calcul Scientifique
France

CAYAN, Daniel R.
Scripps Institution of Oceanography, University of California, San Diego
USA

CAZENAVE, Anny
Laboratoire d’Etudes en Géophysique et Océanographie Spatiale (LEGOS), CNES
France

CHAMBERS, Don
Center for Space Research, The University of Texas at Austin
USA

CHANDLER, Mark
Columbia University and NASA Goddard Institute for Space Studies
USA

CHANG, Edmund K.M.
Stony Brook University, State University of New York
USA

CHAO, Ben
NASA Goddard Institute for Space Studies
USA

CHEN, Anthony
Department of Physics, University of the West Indies
Jamaica

CHEN, Zhenlin
Dept of International Cooperation, China Meteorological Administration
China

CHIDTHAISONG, Annat
The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi
Thailand

CHRISTENSEN, Jens Hesselbjerg
Danish Meteorological Institute
Denmark

CHRISTIAN, James
Fisheries and Oceans, Canada, Canadian Centre for Climate Modelling and Analysis
Canada

CHRISTY, John
University of Alabama in Huntsville
USA

CHURCH, John
CSIRO Marine and Atmospheric Research and Ecosystems Cooperative Research Centre
Australia

CLAES, Philippe
Laboratoire des Sciences du Climat et de l’Environnement
France

CLARK, Deborah A.
University of Missouri, St. Louis
USA

CLARKE, Garry
Earth and Ocean Sciences, University of British Columbia
Canada

CLAUSSEN, Martin
Potsdam Institute for Climate Impact Research
Germany

CLEMENT, Amy
University of Miami, Rosenstiel School of Marine and Atmospheric Science
USA

COGLEY, J. Graham
Department of Geography, Trent University
Canada

COLE, Julia
University of Arizona
USA

COLLIER, Mark
CSIRO Marine and Atmospheric Research
Australia

COLLINS, Matthew
Hadley Centre for Climate Prediction and Research, Met Office
UK
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLLINS, William D.</td>
<td>Climate and Global Dynamics Division, National Center for Atmospheric Research</td>
<td>USA</td>
</tr>
<tr>
<td>COLMAN, Robert</td>
<td>Bureau of Meteorology Research Centre</td>
<td>Australia</td>
</tr>
<tr>
<td>COMISO, Josefinio</td>
<td>National Aeronautics and Space Administration, Goddard Space Flight Center</td>
<td>USA</td>
</tr>
<tr>
<td>CONWAY, Thomas J.</td>
<td>National Oceanic and Atmospheric Administration, Earth System Research Laboratory</td>
<td>USA</td>
</tr>
<tr>
<td>COOK, Edward</td>
<td>Lamont-Doherty Earth Observatory</td>
<td>USA</td>
</tr>
<tr>
<td>CORTUJO, Elsa</td>
<td>Laboratoire des Sciences du Climat et de l’Environnement, CNRS-CEA-UVSQ</td>
<td>France</td>
</tr>
<tr>
<td>COVEY, Curt</td>
<td>Lawrence Livermore National Laboratory</td>
<td>USA</td>
</tr>
<tr>
<td>COX, Peter M.</td>
<td>School of Engineering, Computer Science and Mathematics, University of Exeter</td>
<td>UK</td>
</tr>
<tr>
<td>CROOKS, Simon</td>
<td>University of Oxford</td>
<td>UK</td>
</tr>
<tr>
<td>CUBASCH, Ulrich</td>
<td>Institut für Meteorologie, Freie Universität Berlin</td>
<td>Germany</td>
</tr>
<tr>
<td>CURRY, Ruth</td>
<td>Woods Hole Oceanographic Institution</td>
<td>USA</td>
</tr>
<tr>
<td>DAI, Aiguo</td>
<td>National Center for Atmospheric Research</td>
<td>USA</td>
</tr>
<tr>
<td>DAMERIS, Martin</td>
<td>German Aerospace Center</td>
<td>Germany</td>
</tr>
<tr>
<td>DE ELÍA, Ramón</td>
<td>Ouranos Consortium</td>
<td>Canada, Argentina</td>
</tr>
<tr>
<td>DELWORTH, Thomas L.</td>
<td>Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration</td>
<td>USA</td>
</tr>
<tr>
<td>DENMAN, Kenneth L.</td>
<td>Canadian Centre for Climate Modelling and Analysis, Environment Canada and Department of Fisheries and Oceans</td>
<td>Canada</td>
</tr>
<tr>
<td>DENTENER, Frank</td>
<td>European Commission Joint Research Centre; Institute of Environment and Sustainability Climate Change Unit</td>
<td>EU</td>
</tr>
<tr>
<td>DESER, Clara</td>
<td>National Center for Atmospheric Research</td>
<td>USA</td>
</tr>
<tr>
<td>DETHLOFF, Klaus</td>
<td>Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam</td>
<td>Germany</td>
</tr>
<tr>
<td>DIANSKY, Nikolay A.</td>
<td>Institute of Numerical Mathematics, Russian Academy of Sciences</td>
<td>Russia</td>
</tr>
<tr>
<td>DICKINSON, Robert E.</td>
<td>School of Earth and Atmospheric Sciences, Georgia Institute of Technology</td>
<td>USA</td>
</tr>
<tr>
<td>DING, Yihui</td>
<td>National Climate Centre, China</td>
<td>China</td>
</tr>
<tr>
<td>DIRMEYER, Paul</td>
<td>Center for Ocean-Land-Atmosphere Studies</td>
<td>USA</td>
</tr>
<tr>
<td>DIX, Martin</td>
<td>CSIRO</td>
<td>Australia</td>
</tr>
<tr>
<td>DIXON, Keith</td>
<td>National Oceanic and Atmospheric Administration</td>
<td>USA</td>
</tr>
<tr>
<td>DLUGOKENCKY, Ed</td>
<td>National Oceanic and Atmospheric Administration, Earth System Research Laboratory</td>
<td>USA</td>
</tr>
<tr>
<td>DOKKEN, Trond</td>
<td>Bjerknes Centre for Climate Research</td>
<td>Norway</td>
</tr>
<tr>
<td>DOTZEK, Nikolai</td>
<td>Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre</td>
<td>Germany</td>
</tr>
<tr>
<td>DOUTRIAUX, Charles</td>
<td>Program for Climate Model Diagnosis and Intercomparison</td>
<td>USA, France</td>
</tr>
<tr>
<td>ORANGE, Helge</td>
<td>Nansen Environmental and Remote Sensing Center, Bjerknes Centre for Climate Research</td>
<td>Norway</td>
</tr>
<tr>
<td>DRIESSCHAERT, Emmanuelle</td>
<td>Université catholique de Louvain, Institut d'Astronomie et de Géophysique G. Lemaître</td>
<td>Belgium</td>
</tr>
<tr>
<td>DUFRESNE, Jean-Louis</td>
<td>Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace</td>
<td>France</td>
</tr>
<tr>
<td>DUPLESSY, Jean-Claude</td>
<td>Centre National dela Recherche Scientifique, Laboratoire des Sciences du Climat et de l’Environnement</td>
<td>France</td>
</tr>
<tr>
<td>DURGEROV, Mark</td>
<td>Institute of Arctic and Alpine Research, University of Colorado at Boulder & Department of Geography and Quaternary Geology at Stockholm</td>
<td>Sweden, USA</td>
</tr>
<tr>
<td>EASTERLING, David</td>
<td>National Oceanic and Atmospheric Administration, Earth System Research Laboratory</td>
<td>USA</td>
</tr>
<tr>
<td>EBY, Michael</td>
<td>University of Victoria</td>
<td>Canada</td>
</tr>
<tr>
<td>EDWARDS, Neil R.</td>
<td>The Open University</td>
<td>UK</td>
</tr>
<tr>
<td>ELKINS, James W.</td>
<td>National Oceanic and Atmospheric Administration, Earth System Research Laboratory</td>
<td>USA</td>
</tr>
<tr>
<td>EMERSON, Steven</td>
<td>School of Oceanography, University of Washington</td>
<td>USA</td>
</tr>
<tr>
<td>EMORI, Seita</td>
<td>National Institute for Environmental Studies and Frontier Research Center</td>
<td>Japan</td>
</tr>
<tr>
<td>ETHERIDGE, David</td>
<td>CSIRO Marine and Atmospheric Research</td>
<td>Australia</td>
</tr>
<tr>
<td>EYRING, Veronica</td>
<td>Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre</td>
<td>Germany</td>
</tr>
<tr>
<td>FAHEY, David W.</td>
<td>National Oceanic and Atmospheric Administration, Earth System Research Laboratory</td>
<td>USA</td>
</tr>
<tr>
<td>FASILLO, John</td>
<td>National Center for Atmospheric Research</td>
<td>USA</td>
</tr>
</tbody>
</table>
FEDDEMA, Johannes
University of Kansas
USA

FEELY, Richard
National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory
USA

FEICHTER, Johann
Max Planck Institute for Meteorology
Germany

FICHEFET, Thierry
Université catholique de Louvain, Institut d’Astronomie et de Géophysique G. Lemaître
Belgium

FITZHARRIS, Blair
Department of Geography, University of Otago
New Zealand

FLATO, Gregory
Canadian Centre for Climate Modelling and Analysis, Environment Canada
Canada

FLEITMANN, Dominik
Institute of Geological Sciences, University of Bern
Switzerland, Germany

FLEMING, James Rodger
Colby College
USA

FOGT, Ryan
Polar Meteorology Group, Byrd Polar Research Center and Atmospheric Sciences Program, Department of geography, The Ohio State University
USA

FOLLAND, Christopher
Hadley Centre for Climate Prediction and Research, Met Office
UK

FOREST, Chris
Massachusetts Institute of Technology
USA

FORSTER, Piers
School of Earth and Environment, University of Leeds
UK

FOUKAL, Peter
Heliophysics, Inc.
USA

FRASER, Paul
CSIRO Marine and Atmospheric Research
Australia

FRAUENFELD, Oliver
National Snow and Ice Data Center, University of Colorado at Boulder
USA, Austria

FREE, Melissa
Air Resources Laboratory, National Oceanic and Atmospheric Administration
USA

FREI, Allan
Hunter College, City University of New York
USA

FREI, Christoph
Federal Office of Meteorology and Climatology MeteoSwiss
Switzerland

FRICKER, Helen
Scripps Institution of Oceanography, University of California, San Diego
USA

FRIEDLINGSTEIN, Pierre
Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l’Environnement, France, Belgium

FU, Congbin
Start Regional Center for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Science
China

FUJI, Yoshiyuki
Arctic Environment Research Center, National Institute of Polar Research
Japan

FUNG, Inez
University of California, Berkeley
USA

FURRER, Reinhard
Colorado School of Mines
USA, Switzerland

FUZZI, Sandro
National Research Council, Institute of Atmospheric Sciences and Climate
Italy

FYFE, John
Canadian Centre for Climate Modelling and Analysis, Environment Canada
Canada

GANOPOLSKI, Andrey
Potsdam Institute for Climate Impact Research
Germany

GAO, Xuejie
Laboratory for Climate Change, National Climate Centre, China Meteorological Administration
China

GARCIA, Herman
National Oceanic and Atmospheric Administration, National Oceanographic Data Center
USA

GARCÍA-HERRERA, Ricardo
Universidad Complutense de Madrid
Spain

GAYE, Amadou Thiamo
Laboratory of Atmospheric Physics, ESP/CAD, Dakar University
Senegal

GELLER, Marvin
Stony Brook University
USA

GENT, Peter
National Center for Atmospheric Research
USA

GERDES, Rüdiger
Alfred-Wegener-Institute für Polar und Meeresforschung
Germany

GILLET, Nathan P.
Climatic Research Unit, School of Environmental Sciences, University of East Anglia
UK

GIORG i, Filippo
Abdus Salam International Centre for Theoretical Physics
Italy

GLEASON, Byron
National Climatic Data Center, National Oceanic and Atmospheric Administration
USA

GLECKER, Peter
Lawrence Livermore National Laboratory
USA

GONG, Sunling
Air Quality Research Division, Science & Technology Branch, Environment Canada
Canada

GONZÁLEZ-DAVILA, Melchor
University of Las Palmas de Gran Canaria
Spain

GONZÁLEZ-ROUCO, Jesús Fidel
Universidad Complutense de Madrid
Spain

GOOSSE, Hugues
Université catholique de Louvain
Belgium

GRAHAM, Richard
Hadley Centre, Met Office
UK

GREGORY, Jonathan M.
Department of Meteorology, University of Reading and Hadley Centre for Climate Prediction and Research, Met Office
UK

GRIESSER, Jürgen
Deutscher Wetterdienst, Global Precipitation Climatology Centre
Germany

GRIFFS, David
Hadley Centre for Climate Prediction and Research, Met Office
UK

GROISMAN, Pavel
University Corporation for Atmospheric Research at the National Climatic Data Center, National Oceanic and Atmospheric Administration
USA, Russian Federation
GRUBER, Nicolas
Institute of Geophysics and Planetary Physics, University of California, Los Angeles and Department of Environmental Sciences, ETH Zurich USA, Switzerland

GUDGEL, Richard
National Oceanic and Atmospheric Administration USA

GUDMUNDSSON, G. Hilmar
British Antarctic Survey UK, Iceland

GUENTHER, Alex
National Center for Atmospheric Research USA

GULEV, Sergey
P. P. Shirshov Institute of Oceanography Russian Federation

GURNEY, Kevin
Department of Earth and Atmospheric Science, Purdue University USA

GUTOWSKI, William
Iowa State University USA

HAAS, Christian
Alfred Wegener Institute Germany

HABIBI NOKHANDAN, Majid
National Center for Climatology Iran

HAGEN, Jon Ove
University of Oslo Norway

HAIGH, Joanna
Imperial College London UK

HALL, Alex
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles USA

HALLEGATTE, Stéphane
Centre International de Recherche sur l’Environnement et le Développement, École Nationale des Ponts-et-Chausées and Centre National de Recherches Meteorologique, Meteo-France USA, France

HANAWA, Kimio
Physical Oceanography Laboratory, Department of Geophysics, Graduate School of Science, Tohoku University Japan

HANSEN, James
Goddard Institute for Space Studies USA

HANSEN-BAUER, Inger
Norwegian Meteorological Institute Norway

HARRIS, Charles
School of Earth, Ocean and Planetary Science, Cardiff University UK

HARRIS, Glen
Hadley Centre for Climate Prediction and Research, Met Office UK, New Zealand

HARVEY, Danny
University of Toronto Canada

HASUMI, Hiroyasu
Center for Climate System Research, University of Tokyo Japan

HAUGLUSTAINE, Didier
Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ France

HAYWOOD, James
Hadley Centre for Climate Prediction and Research, Met Office UK

HEGERL, Gabriele C.
Division of Earth and Ocean Sciences, Nicholas School for the Environment and Earth Sciences, Duke University USA, Germany

HEIMANN, Martin
Max-Planck-Institut für Biogeochemie Germany, Switzerland

HEINZE, Christoph
University of Bergen, Geophysical Institute and Bjerkenes Centre for Climate Research Norway, Germany

HELD, Isaac
National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA

HENDerson-Sellers, Ann
World Meteorological Organization Switzerland

HENDON, Henry
Bureau of Meteorology Research Centre Australia

HEWITSON, Bruce
Department of Environmental and Geographical Sciences, University of Cape Town South Africa

HINZMAN, Larry
University of Alaska, Fairbanks USA

HOCK, Regine
Stockholm University Sweden

HODGES, Kevin
Environmental Systems Science Centre UK

HOELZLE, Martin
University of Zürich, Department of Geography Switzerland

HOLLAND, Elisabeth
Atmospheric Chemistry Division, National Center for Atmospheric Research (NCAR) USA

HOLLAND, Marika
National Center for Atmospheric Research USA

HOLTSLAG, Albert A. M.
Wageningen University Netherlands

HOSKINS, Brian J.
Department of Meteorology, University of Reading UK

HOUSE, Joanna
Quantifying and Understanding the Earth System Programme, University of Bristol UK

HU, Aixue
National Center for Atmospheric Research USA, China

HUNKE, Elisabeth
Atmospheric Chemistry Division, National Center for Atmospheric Research (NCAR) USA

HURRELL, James
National Center for Atmospheric Research USA

HUYBRECHTS, Philippe
Departement Geografie, Vrije Universiteit Brussel Belgium

INGRAM, William
Hadley Centre for Climate Prediction and Research, Met Office UK

ISAKSEN, Ketil
Norwegian Meteorological Institute Norway

ISHI, Masayoshi
Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology Japan

JACOB, Daniel
Department of Earth and Planetar Science, Harvard University USA, France

JALLOW, Bubu
Department of Water Resources The Gambia

JANSEN, Eystein
University of Bergen, Department of Earth Sciences and Bjerkenes Centre for Climate Research Norway
JANSSON, Peter
Department of Physical Geography and
Quaternary Geology, Stockholm University
Sweden

JENKINS, Adrian
British Antarctic Survey, Natural
Environment Research Council
UK

JONES, Andy
Hadley Centre for Climate Prediction
and Research, Met Office
UK

JONES, Christopher
Hadley Centre for Climate Prediction
and Research, Met Office
UK

JONES, Colin
Université du Québec à Montréal, Canadian
Regional Climate Modelling Network
Canada

JONES, Gareth S.
Hadley Centre for Climate Prediction
and Research, Met Office
UK

JONES, Julie
GKSS Research Centre
Germany, UK

JONES, Philip D.
Climatic Research Unit, School of
Environmental Sciences,
University of East Anglia
UK

JONES, Richard
Hadley Centre for Climate Prediction
and Research, Met Office
UK

JOOS, Fortunat
Climate and Environmental Physics,
Physics Institute, University of Bern
Switzerland

JOSEY, Simon
National Oceanography Centre,
University of Southampton
UK

JOUGHIN, Ian
Applied Physics Laboratory,
University of Washington
USA

JOUEL, Jean
Institut Pierre Simon Laplace,
Laboratoire des Sciences du Climat et de
l’Environnement, CEA-CNRS-UVSQ
France

JOYCE, Terrence
Woods Hole Oceanographic Institution
USA

JUNGLAUS, Johann H.
Max Planck Institute for Meteorology
Germany

KAGEYAMA, Masa
Laboratoire des Sciences du
Climat et de l’Environnement
France

KÅLLBERG, Per
European Centre for Medium-
Range Weather Forecasts
ECMWF

KÄRCHER, Bernd
Deutsches Zentrum für Luft und Raumfahrt,
Institut für Physik der Atmosphäre
Germany

KARL, Thomas R.
National Oceanic and Atmospheric
Administration, National
Climatic Data Center
USA

KAROLY, David J.
University of Oklahoma
USA, Australia

KASER, Georg
Institut für Geographie,
University of Innsbruck
Austria, Italy

KATTSOV, Vladimir
VoelkoV Main Geophysical Observatory
Russian Federation

KATZ, Robert
National Center for Atmospheric Research
USA

KAWAMIYA, Michio
Frontier Research Center for Global
Change, Japan Agency for Marine-
Earth Science and Technology
Japan

KEELING, C. David
Scripps Institution of Oceanography
USA

KEELING, Ralph
Scripps Institution of Oceanography
USA

KENNEDY, John
Hadley Centre, Met Office
UK

KENYON, Jesse
Duke University
USA

KETTLEBOROUGH, Jamie
British Atmospheric Data Centre,
Space Science and Technology
Department, Council for the Central
Laboratory of the Research Councils
UK

KHARIN, Viatcheslar
Canadian Centre for Climate Modelling
and Analysis, Environment Canada
Canada

KHODRI, Myriam
Institut de Recherche Pour
de Developpement
France

KILADIS, George
National Oceanic and
Atmospheric Administration
USA

KIM, Kuh
Seoul National University
Republic of Korea

KIMOTO, Masahide
Center for Climate System
Research, University of Tokyo
Japan

KING, Brian
National Oceanography
Centre, Southampton
UK

KNINNE, Stefan
Max-Planck Institute for Meteorology
Germany

KIRTMAN, Ben
Center for Ocean-Land-Atmosphere
Studies, George Mason University
USA

KITOH, Akio
First Research Laboratory, Climate Research
Department, Meteorological Research
Institute, Japan Meteorological Agency
Japan

KLEIN, Stephen A.
Lawrence Livermore National Laboratory
USA

KLEIN TANK, Albert
Royal Netherlands Meteorological
Institute (KNMI)
Netherlands

KNUTSON, Thomas
Geophysical Fluid Dynamics
Laboratory, National Oceanic and
Atmospheric Administration
USA

KNUTTI, Reto
Climate and Global Dynamics Division,
National Center for Atmospheric Research
Switzerland

KOERTZINGER, Arne
Leibniz Institut für Meereswissenschaften
an der Universität Kiel und Institut
für Ostseeforschung Warnemünde
Germany

KOIKE, Toshio
Department of Civil Engineering,
University of Tokyo
Japan

KOLL, Rupa Kumar
Climatology and Hydrometeorology
Division, Indian Institute of
Tropical Meteorology
India

KOSTER, Randal
National Aeronautics and
Space Administration
USA

KOTTMEIER, Christoph
Institut für Meteorologie, und
Klimaforschung, Universität Karlsruhe/
Forschungszentrum Karlsruhe
Germany
KRIPALANI, Ramesh
Indian Institute of Tropical Meteorology
India

KRYNYTZKY, Marta
University of Washington
USA

KUNKEL, Kenneth
Illinois State Water Survey
USA

KUSHNER, Paul J.
Department of Physics,
University of Toronto
Canada

KWOI, Won-Tae
Climate Research Laboratory,
Meteorological Research Institute (METRI),
Korean Meteorological Administration
Republic of Korea

LABEYRIE, Laurent
Laboratoire des Sciences du Climat et de l’Environnement
France

LAIN, Alexandre
Laboratoire des Sciences du Climat et de l’Environnement
France

LAM, Chiu-Ying
Hong Kong Observatory
China

LAMBECK, Kurt
Australia National University
Australia

LAMBERT, F. Hugo
Atmospheric, Oceanic and Planetary Physics, University of Oxford
UK

LANZANTE, John
National Oceanic and Atmospheric Administration
USA

LAPRISE, René
Département des Sciences de la Terre et de l’Atmosphère, University of Quebec at Montreal
Canada

LASSEY, Keith
National Institute of Water and Atmospheric Research
New Zealand

LATIF, Mojib
Leibniz Institut für Meereswissenschaften,
IFM-GEOMAR
Germany

LAU, Ngar-Cheung
Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration
USA

LAVAL, Katia
Laboratoire de Météorologie Dynamique du CNRS
France

LAVINE, Michael
Duke University
USA

LAWRENCE, David
National Center for Atmospheric Research
USA

LAWRIMORE, Jay
National Oceanic and Atmospheric Administration, National Climatic Data Center
USA

LAXON, Seymour
Centre for Polar Observation and Modelling, University London London
UK

LE BROCOQ, Anne
Centre for Polar Observation and Modelling, University of Bristol
UK

LE QUERÉ, Corrine
University of East Anglia and British Antarctic Survey
UK, France, Canada

LE TREUT, Hervé
Laboratoire de Météorologie Dynamique du CNRS
France

LEAN, Judith
Naval Research Laboratory
USA

LECK, Caroline
Department of Meteorology, Stockholm University
Sweden

LEE, Terry C.K.
University of Victoria
Canada

LEE-TAYLOR, Julia
National Center for Atmospheric Research
USA, UK

LEFEVRE, Nathalie
Institut de Recherche pour le Developpement, Laboratoire d’Oceanoagraphie et de Climatoologie
France

LEMEKE, Peter
Alfred Wegener Institute for Polar and Marine Research
Germany

LEUJETTE, Eric
University of Colorado, Boulder
USA

LEUNG, Ruby
Pacific Northwest National Laboratory, National Oceanic and Atmospheric Administration
USA

LEVERMANN, Anders
Potsdam Institute for Climate Impact Research
Germany

LEVINSON, David
National Oceanic and Atmospheric Administration, National Climatic Data Center
USA

LEVITUS, Sydney
National Oceanic and Atmospheric Administration
USA

LIE, Øyvind
Bjerknes Centre for Climate Research
Norway

LIEPERT, Beate
Lamont-Doherty Earth Observatory, Columbia University
USA

LIU, Shiying
Cold and Arid Regions Environmental and Engineering Research Institute,
Chinese Academy of Sciences
China

LOHMANN, Ulrike
ETH Zürich, Institute for Atmospheric and Climate Science
Switzerland

LOUTRE, Marie-France
Université catholique de Louvain,
Institut d’Astronomie et de Géophysique G. Lemaitre
Belgium

LOWE, Jason
Hadley Centre for Climate Prediction and Research, Met Office
UK

LOWE, David C.
National Institute of Water and Atmospheric Research
New Zealand

LU, Yong
Laboratory for Climate Change, National Climate Centre, China Meteorological Administration
China

LUTERBACHER, Jürg
Institute of Geography, Climatology and Meteorology, and National Centre of Competence in Research on Climate, University of Bern
Switzerland

LYNCH, Amanda H.
School of Geography and Environmental Science, Monash University
Australia

MACAYEAL, Douglas
University of Chicago
USA

MACCRACKEN, Michael
Climate Institute
USA
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGAÑA RUEDA, Victor</td>
<td>Centro de Ciencias de la Atmósfera, Ciudad Universitaria, Universidad Nacional Autonomia de Mexico, Mexico</td>
</tr>
<tr>
<td>MALHI, Yadavinder</td>
<td>University of Oxford, UK</td>
</tr>
<tr>
<td>MALANOTTE-RIZZOLI, Paola</td>
<td>Massachusetts Institute of Technology, USA, Italy</td>
</tr>
<tr>
<td>MANNING, Andrew C.</td>
<td>University of East Anglia, UK, New Zealand</td>
</tr>
<tr>
<td>MANNING, Martin</td>
<td>IPCC WGI TSU, National Oceanic and Atmospheric Administration, Earth System Research Laboratory, USA, New Zealand</td>
</tr>
<tr>
<td>MANZINI, Elisa</td>
<td>National Institute for Geophysics and Volcanology, Italy</td>
</tr>
<tr>
<td>MARENGO ORSINI, Jose Antonio</td>
<td>CPTEC/INPE, Brazil, Peru</td>
</tr>
<tr>
<td>MARSH, Robert</td>
<td>National Oceanography Centre, University of Southampton, UK</td>
</tr>
<tr>
<td>MARSHALL, Gareth</td>
<td>British Antarctic Survey, UK</td>
</tr>
<tr>
<td>MARTELO, Maria</td>
<td>Ministerio del Ambiente y los Recursos Naturales, Dir. de Hidrologia y Meteorologia, Venezuela</td>
</tr>
<tr>
<td>MASARIE, Ken</td>
<td>National Oceanic and Atmospheric Administration, Global Monitoring Division Laboratory, USA</td>
</tr>
<tr>
<td>MASSON-DELMOTTE, Valérie</td>
<td>Labaratoire des Sciences du Climat et de l’Environnement, France</td>
</tr>
<tr>
<td>MATSUMOTO, Katsumi</td>
<td>University of Minnesota, Twin Cities, USA</td>
</tr>
<tr>
<td>MatsuNO, Taroh</td>
<td>Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Japan</td>
</tr>
<tr>
<td>MATTHEWS, H. Damon</td>
<td>University of Calgary and Concordia University, Canada</td>
</tr>
<tr>
<td>MATULLA, Christoph</td>
<td>Environment Canada, Canada, Austria</td>
</tr>
<tr>
<td>MAURITZEN, Cecile</td>
<td>Norwegian Meteorological Institute, Norway</td>
</tr>
<tr>
<td>MCAVANEY, Bryant</td>
<td>Bureau of Meteorology Research Centre, Australia</td>
</tr>
<tr>
<td>MCFIGGANS, Gordon</td>
<td>University of Manchester, UK</td>
</tr>
<tr>
<td>MCINNES, Kathleen</td>
<td>CSIRO, Marine and Atmospheric Chemistry Research, Australia</td>
</tr>
<tr>
<td>MCPHADEN, Michael</td>
<td>National Oceanic and Atmospheric Administration, USA</td>
</tr>
<tr>
<td>MEARNS, Linda</td>
<td>National Center for Atmospheric Research, USA</td>
</tr>
<tr>
<td>Mears, Carl</td>
<td>Remote Sensing Systems, USA</td>
</tr>
<tr>
<td>MEEHL, Gerald A.</td>
<td>Climate and Global Dynamics Division, National Center for Atmospheric Research, USA</td>
</tr>
<tr>
<td>MEINSHAUSEN, Malte</td>
<td>Potsdam Institute for Climate Impact Research, Germany</td>
</tr>
<tr>
<td>MELLING, Humphrey</td>
<td>Fisheries and Oceans Canada, Canada</td>
</tr>
<tr>
<td>MENÉNDEZ, Claudio Guillermo</td>
<td>Centro de Investigaciones del Mar y de la Atmósfera, (CONICET-UBA), Argentina</td>
</tr>
<tr>
<td>MENON, Surabi</td>
<td>Lawrence Berkeley National Laboratory, USA</td>
</tr>
<tr>
<td>MIESCHERSKAYA, Anna V.</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>MILLER, John B.</td>
<td>National Oceanic and Atmospheric Administration, USA</td>
</tr>
<tr>
<td>MILLOT, Claude</td>
<td>Centre National dela Recherche Scientifique, France</td>
</tr>
<tr>
<td>MILLY, Chris</td>
<td>United States Geological Survey, USA</td>
</tr>
<tr>
<td>MITCHELL, John</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office, UK</td>
</tr>
<tr>
<td>MOKSSIT, Abdalah</td>
<td>Direction de la météorologie Nationale, Morocco</td>
</tr>
<tr>
<td>MOLINA, Mario</td>
<td>Scripps Institution of Oceanography, Dept. of Chemistry and Biochemistry, University of California, San Diego, USA, Mexico</td>
</tr>
<tr>
<td>MOLINARI, Robert</td>
<td>National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, USA</td>
</tr>
<tr>
<td>MONANAN, Adam H.</td>
<td>School of Earth and Ocean Sciences, University of Victoria, Canada</td>
</tr>
<tr>
<td>MONIN, Eric</td>
<td>Climate and Environmental Physics, Physics Institute, University of Bern, Switzerland</td>
</tr>
<tr>
<td>MONTZKA, Steve</td>
<td>National Oceanic and Atmospheric Administration, USA</td>
</tr>
<tr>
<td>MOSLEY-THOMPSON, Ellen</td>
<td>Ohio State University, USA</td>
</tr>
<tr>
<td>MURPHY, James M.</td>
<td>National Institute of Water and Atmospheric Research, New Zealand</td>
</tr>
<tr>
<td>MÜLLER, Simon A.</td>
<td>Climate and Environmental Physics, Physics Institute, University of Bern, Switzerland</td>
</tr>
<tr>
<td>MURPHY, James M.</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office, UK</td>
</tr>
<tr>
<td>MUSCHELER, Raimund</td>
<td>Goddard Earth Sciences and Technology Center, University of Maryland & NASA/Goddard Space Flight Center, Climate & Radiation Branch, USA</td>
</tr>
<tr>
<td>MYHRE, Gunnar</td>
<td>Department of Geosciences, University of Oslo, Norway</td>
</tr>
<tr>
<td>NAKAJIMA, Teruyuki</td>
<td>Center for Climate System Research, University of Tokyo, Japan</td>
</tr>
<tr>
<td>NAKAMURA, Hisashi</td>
<td>Department of Earth, Planetary Science, University of Tokyo, Japan</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>NAWRATH, Susanne</td>
<td>Potsdam Institute for Climate Impact Research</td>
</tr>
<tr>
<td>NEREM, R. Steven</td>
<td>University of Colorado at Boulder</td>
</tr>
<tr>
<td>NEW, Mark</td>
<td>Centre for the Environment, University of Oxford</td>
</tr>
<tr>
<td>NGANGA, John</td>
<td>University of Nairobi</td>
</tr>
<tr>
<td>NICHOLLS, Neville</td>
<td>Monash University</td>
</tr>
<tr>
<td>NODA, Akira</td>
<td>Meteorological Research Institute, Japan</td>
</tr>
<tr>
<td>NOJIRI, Yukihiko</td>
<td>Secretariat of Council for Science and Technology Policy, Cabinet Office</td>
</tr>
<tr>
<td>NOKHANDAN, Majid Habibi</td>
<td>Iranian Meteorological Organization</td>
</tr>
<tr>
<td>NORRIS, Joel</td>
<td>Scripps Institution of Oceanography</td>
</tr>
<tr>
<td>NOZAWA, Toru</td>
<td>National Institute for Environmental Studies</td>
</tr>
<tr>
<td>OERLEMANS, Johannes</td>
<td>Institute for Marine and Atmospheric Research, Utrecht University</td>
</tr>
<tr>
<td>OALGO, Laban</td>
<td>IGAD Climate Prediction and Application Centre</td>
</tr>
<tr>
<td>OHMURA, Atsumu</td>
<td>Swiss Federal Institute of Technology Switzerland</td>
</tr>
<tr>
<td>OKI, Taikan</td>
<td>Institute of Industrial Science, The University of Tokyo</td>
</tr>
<tr>
<td>OLAGO, Daniel</td>
<td>Department of Geology, University of Nairobi</td>
</tr>
<tr>
<td>ONO, Tsuneo</td>
<td>Hokkaido National Fisheries Research Institute, Fisheries Research Agency</td>
</tr>
<tr>
<td>OPPENHEIMER, Michael</td>
<td>Princeton University</td>
</tr>
<tr>
<td>ORAM, David</td>
<td>University of East Anglia</td>
</tr>
<tr>
<td>ORR, James C.</td>
<td>Marine Environment Laboratories, International Atomic Energy Agency</td>
</tr>
<tr>
<td>OSBORN, Tim</td>
<td>University of East Anglia</td>
</tr>
<tr>
<td>O’SHAUGHNESSY, Kath</td>
<td>National Institute of Water and Atmospheric Research</td>
</tr>
<tr>
<td>OTTO-BLIESNER, Bette</td>
<td>Climate and Global Dynamics Division, National Center for Atmospheric Research</td>
</tr>
<tr>
<td>OVERPECK, Jonathan</td>
<td>Institute for the Study of Planet Earth, University of Arizona</td>
</tr>
<tr>
<td>PAASCHE, Øyvind</td>
<td>Bjerknes Centre for Climate Research</td>
</tr>
<tr>
<td>PAHLOW, Markus</td>
<td>Dalhousie University, Bedford</td>
</tr>
<tr>
<td>PAL, Jeremy S.</td>
<td>Loyola Marymount University, The Abdus Salam International Centre for Theoretical Physics</td>
</tr>
<tr>
<td>PALMER, Timothy</td>
<td>European Centre for Medium-Range Weather Forecasting</td>
</tr>
<tr>
<td>PANT, Govind Ballabh</td>
<td>Indian Institute of Tropical Meteorology</td>
</tr>
<tr>
<td>PARKER, David</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>PARRENIN, Frédéric</td>
<td>Laboratoire de Glaciologie et Géophysique de l’Environnement</td>
</tr>
<tr>
<td>PAVLOVA, Tatjana</td>
<td>Voeikov Main Geophysical Observatory</td>
</tr>
<tr>
<td>PAYNE, Antony</td>
<td>University of Bristol</td>
</tr>
<tr>
<td>PELTIER, W. Richard</td>
<td>Department of Physics, University of Toronto</td>
</tr>
<tr>
<td>PENG, Tsung-Hung</td>
<td>Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>PENNER, Joyce E.</td>
<td>Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan</td>
</tr>
<tr>
<td>PETERSON, Thomas</td>
<td>National Oceanic and Atmospheric Administration, National Climatic Data Center</td>
</tr>
<tr>
<td>PETOUKHOV, Vladimir</td>
<td>Potsdam Institute for Climate Impact Research</td>
</tr>
<tr>
<td>PEYLIN, Philippe</td>
<td>Laboratoire des Modélisation du Climat et de l’Environnement</td>
</tr>
<tr>
<td>PFISTER, Christian</td>
<td>University of Bern</td>
</tr>
<tr>
<td>PHILLIPS, Thomas</td>
<td>Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>PIERCE, David</td>
<td>Scripps Institution of Oceanography</td>
</tr>
<tr>
<td>PIPER, Stephen</td>
<td>Scripps Institution of Oceanography</td>
</tr>
<tr>
<td>PITMAN, Andrew</td>
<td>Department of Physical Geography, Macquarie University</td>
</tr>
<tr>
<td>PLANTON, Serge</td>
<td>Météo-France</td>
</tr>
<tr>
<td>PLATTNER, Gian-Kasper</td>
<td>Climate and Environmental Physics, Physics Institute, University of Bern</td>
</tr>
<tr>
<td>PLUMMER, David</td>
<td>Environment Canada</td>
</tr>
<tr>
<td>POLLACK, Henry</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>PONATER, Michael</td>
<td>Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre</td>
</tr>
<tr>
<td>POWER, Scott</td>
<td>Bureau of Meteorology Research Centre</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>PRATHER, Michael</td>
<td>Earth System Science Department, University of California at Irvine USA</td>
</tr>
<tr>
<td>PRINN, Ronald</td>
<td>Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology USA, New Zealand</td>
</tr>
<tr>
<td>PROSHUTINSKY, Andrey</td>
<td>Woods Hole Oceanographic Institution USA</td>
</tr>
<tr>
<td>PROWSE, Terry</td>
<td>Environment Canada, University of Victoria Canada</td>
</tr>
<tr>
<td>QIN, Dahe</td>
<td>Co-Chair, IPCC WGI, China Meteorological Administration China</td>
</tr>
<tr>
<td>QIU, Bo</td>
<td>University of Hawaii USA</td>
</tr>
<tr>
<td>QUAAAS, Johannes</td>
<td>Max Planck Institute for Meteorology Germany</td>
</tr>
<tr>
<td>QUADFASEL, Detlef</td>
<td>Institut für Meereskunde, Centre for Marine and Atmospheric Sciences Hamburg Germany</td>
</tr>
<tr>
<td>RAGA, Graciela</td>
<td>Centro de Ciencias de la Atmósfera, Universidad Nacional Autonoma de Mexico Mexico, Argentina</td>
</tr>
<tr>
<td>RAHMIZADEH, Fatemeh</td>
<td>Atmospheric Science & Meteorological Research Center (ASMERC), I.R. of Iran Meteorological Organization (IRIMO) Iran</td>
</tr>
<tr>
<td>RAHMSTORF, Stefan</td>
<td>Potsdam Institute for Climate Impact Research Germany</td>
</tr>
<tr>
<td>RAISANEN, Jouni</td>
<td>Department of Physical Sciences, University of Helsinki Finland</td>
</tr>
<tr>
<td>RAMACHANDRAN, Srikant</td>
<td>Space & Atmospheric Sciences Division, Physical Research Laboratory India</td>
</tr>
<tr>
<td>RAMANATHAN, Veerabhadran</td>
<td>Scripps Institution of Oceanography USA</td>
</tr>
<tr>
<td>RAMANKUTTY, Navin</td>
<td>University of Wisconsin, Madison USA, India</td>
</tr>
<tr>
<td>RAMASWAMY, Venkatachalam</td>
<td>National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA</td>
</tr>
<tr>
<td>RAMESH, Rengaswamy</td>
<td>Physical Research Laboratory India</td>
</tr>
<tr>
<td>RANDALL, David A.</td>
<td>Department of Atmospheric Science, Colorado State University USA</td>
</tr>
<tr>
<td>RAPER, Sarah C.B.</td>
<td>Manchester Metropolitan University UK</td>
</tr>
<tr>
<td>RAUP, Bruce H.</td>
<td>National Snow and Ice Data Center, University of Colorado USA</td>
</tr>
<tr>
<td>RAUPACH, Michael</td>
<td>CSIRO Australia</td>
</tr>
<tr>
<td>RAYMOND, Charles</td>
<td>University of Washington, Department of Earth and Space Sciences USA</td>
</tr>
<tr>
<td>RAYNAUD, Dominique</td>
<td>Laboratoire de Glaciologie et Géophysique de l’Environnement France</td>
</tr>
<tr>
<td>RAYNER, Peter</td>
<td>Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l’Environnement France</td>
</tr>
<tr>
<td>REHDER, Gregor</td>
<td>Leibniz Institut für Meereswissenschaften an der Universität Kiel und Institut für Ostseeforschung Warnemunde Germany</td>
</tr>
<tr>
<td>REID, George</td>
<td>National Oceanic and Atmospheric Administration USA</td>
</tr>
<tr>
<td>REN, Jiawen</td>
<td>Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences China</td>
</tr>
<tr>
<td>RENSSEN, Hans</td>
<td>Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam Netherlands</td>
</tr>
<tr>
<td>RENWICK, James A.</td>
<td>National Institute of Water and Atmospheric Research New Zealand</td>
</tr>
<tr>
<td>RIEBESELL, Ulf</td>
<td>Leibniz Institute for Marine Sciences, IFM-GEO MAR Germany</td>
</tr>
<tr>
<td>RIGNOT, Eric</td>
<td>Jet Propulsion Laboratory USA</td>
</tr>
<tr>
<td>RIGOR, Ignatius</td>
<td>Polar Science Center, Applied Physics Laboratory, University of Washington USA</td>
</tr>
<tr>
<td>RIND, David</td>
<td>National Aeronautics and Space Administration, Goddard Institute for Space Studies USA</td>
</tr>
<tr>
<td>RINKE, Annette</td>
<td>Alfred Wegener Institute for Polar and Marine Research Germany</td>
</tr>
<tr>
<td>RINTOUL, Stephen</td>
<td>CSIRO, Marine and Atmospheric Research and Antarctic Climate and Ecosystems Cooperative Research Centre Australia</td>
</tr>
<tr>
<td>RIXEN, Michel</td>
<td>University of Liege and NATO Undersea Research Center NATO, Belgium</td>
</tr>
<tr>
<td>RIZZOLI, Paola</td>
<td>Massachusetts Institute of Technology USA, Italy</td>
</tr>
<tr>
<td>ROBERTS, Malcolm</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office UK</td>
</tr>
<tr>
<td>ROBERTSON, Franklin R.</td>
<td>National Aeronautics and Space Administration USA</td>
</tr>
<tr>
<td>ROBINSON, David</td>
<td>Rutgers University USA</td>
</tr>
<tr>
<td>RÖDENBECK, Christian</td>
<td>Max Planck Institute for Biogeochemistry Jena Germany</td>
</tr>
<tr>
<td>ROECKNER, Erich</td>
<td>Max Planck Institute for Meteorology Germany</td>
</tr>
<tr>
<td>ROSATI, Anthony</td>
<td>National Oceanic and Atmospheric Administration USA</td>
</tr>
<tr>
<td>ROSENLOF, Karen</td>
<td>National Oceanic and Atmospheric Administration USA</td>
</tr>
<tr>
<td>ROTHROCK, David</td>
<td>University of Washington USA</td>
</tr>
<tr>
<td>ROSTSTAYN, Leon</td>
<td>CSIRO Marine and Atmospheric Research Australia</td>
</tr>
<tr>
<td>ROULET, Nigel</td>
<td>McGill University Canada</td>
</tr>
<tr>
<td>Name</td>
<td>Institution and Location</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>RUMMUKAINEN, Markku</td>
<td>Rosby Centre, Swedish Meteorological and Hydrological Institute, Sweden, Finland</td>
</tr>
<tr>
<td>RUSSELL, Gary L.</td>
<td>National Aeronautics and Space Administration, Goddard Institute for Space Studies, USA</td>
</tr>
<tr>
<td>RUSTICUCCI, Matilde</td>
<td>Departamento de Ciencias de la atmósfera y los Océanos, FCEN, Universidad de Buenos Aires, Argentina</td>
</tr>
<tr>
<td>RUSSELL, Gary L.</td>
<td>National Aeronautics and Space Administration, Goddard Institute for Space Studies, USA</td>
</tr>
<tr>
<td>RUSTICUCCI, Matilde</td>
<td>Departamento de Ciencias de la atmósfera y los Océanos, FCEN, Universidad de Buenos Aires, Argentina</td>
</tr>
<tr>
<td>SABINE, Christopher</td>
<td>National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, USA</td>
</tr>
<tr>
<td>SAHAGIAN, Dork</td>
<td>Lehigh University, USA</td>
</tr>
<tr>
<td>SALAS Y MÉLIA, David</td>
<td>Méteo-France, Centre National de Recherches Météorologiques, France</td>
</tr>
<tr>
<td>SANTER, Ben D.</td>
<td>Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, USA</td>
</tr>
<tr>
<td>SARR, Abdoulaye</td>
<td>Service Météorologique, DMN Sénégal, Senegal</td>
</tr>
<tr>
<td>SAUSEN, Robert</td>
<td>Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre, Germany</td>
</tr>
<tr>
<td>SCHÄR, Christoph</td>
<td>ETH Zürich, Institute for Atmospheric and Climate Science, Switzerland</td>
</tr>
<tr>
<td>SCHERRER, Simon Christian</td>
<td>Federal Office of Meteorology and Climatology MeteoSwiss, Switzerland</td>
</tr>
<tr>
<td>SCHMIDT, Gavin</td>
<td>National Aeronautics and Space Administration, Goddard Institute for Space Studies, USA, UK</td>
</tr>
<tr>
<td>SCHMIDTNER, Andreas</td>
<td>College of Oceanic and Atmospheric Sciences, Oregon State University, USA, Germany</td>
</tr>
<tr>
<td>SCHNEIDER, Birgit</td>
<td>Leibniz Institut für Meereswissenschaften, Germany</td>
</tr>
<tr>
<td>SCHOTT, Friedrich</td>
<td>Leibniz Institut für Meereswissenschaften, IFM-GEOMAR, Germany</td>
</tr>
<tr>
<td>SCHULTZ, Martin G.</td>
<td>Max Planck Institute for Meteorology, Germany</td>
</tr>
<tr>
<td>SCHULZ, Michael</td>
<td>Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, France, Germany</td>
</tr>
<tr>
<td>SCHWARTZ, Stephen E.</td>
<td>Brookhaven National Laboratory, USA</td>
</tr>
<tr>
<td>SCHWARZKOPF, Dan</td>
<td>National Oceanic and Atmospheric Administration, USA</td>
</tr>
<tr>
<td>SCIROCCO, John</td>
<td>Canadian Centre for Climate Modelling and Analysis, Environment Canada, Canada</td>
</tr>
<tr>
<td>SEIDOV, Dan</td>
<td>Pennsylvania State University, USA</td>
</tr>
<tr>
<td>SEMAZZI, Fred H.</td>
<td>North Carolina State University, USA</td>
</tr>
<tr>
<td>SENIOR, Catherine</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office, UK</td>
</tr>
<tr>
<td>SEXTON, David</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office, UK</td>
</tr>
<tr>
<td>SHEA, Dennis</td>
<td>National Center for Atmospheric Research, USA</td>
</tr>
<tr>
<td>SHEPHERD, Andrew</td>
<td>School of Geosciences, The University of Edinburgh, UK</td>
</tr>
<tr>
<td>SHEPHERD, J. Marshall</td>
<td>University of Georgia, Department of Geography, USA</td>
</tr>
<tr>
<td>SHEPHERD, Theodore G.</td>
<td>University of Toronto, Canada</td>
</tr>
<tr>
<td>SHERWOOD, Steven</td>
<td>Yale University, USA</td>
</tr>
<tr>
<td>SHUKLA, Jagadish</td>
<td>Center for Ocean-Land-Atmosphere Studies, George Mason University, USA</td>
</tr>
<tr>
<td>SHUM, C.K.</td>
<td>Geodetic Science, School of Earth Sciences, The Ohio State University, USA</td>
</tr>
<tr>
<td>SIEGMUND, Peter</td>
<td>Royal Netherlands Meteorological Institute (KNMI), Netherlands</td>
</tr>
<tr>
<td>SILVA DIAS, Pedro Leite da</td>
<td>Universidade de Sao Paulo, Brazil</td>
</tr>
<tr>
<td>SIMMONDS, Ian</td>
<td>University of Melbourne, Australia</td>
</tr>
<tr>
<td>SIMMONDS, Adrian</td>
<td>European Centre for Medium-Range Weather Forecasts, ECMWF, UK</td>
</tr>
<tr>
<td>SIROCKO, Frank</td>
<td>University of Mainz, Germany</td>
</tr>
<tr>
<td>SLEATER, Andrew G.</td>
<td>Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA, Australia</td>
</tr>
<tr>
<td>SMITH, Doug</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office, UK</td>
</tr>
<tr>
<td>SMITH, Sharon</td>
<td>Geological Survey of Canada, Natural Resources Canada, Canada</td>
</tr>
<tr>
<td>SODEN, Brian</td>
<td>University of Miami, Rosenstiel School for Marine and Atmospheric Science, USA</td>
</tr>
<tr>
<td>SOKOLOV, Andrei</td>
<td>Massachusetts Institute of Technology, USA, Russian Federation</td>
</tr>
<tr>
<td>SOLANKI, Sami K.</td>
<td>Max Planck Institute for Solar System Research, Germany, Switzerland</td>
</tr>
<tr>
<td>SOLOMON, Susan</td>
<td>Co-Chair, IPCC WG1, National Oceanic and Atmospheric Administration, Earth System Research Laboratory, USA</td>
</tr>
<tr>
<td>SOLOMONA, Olga</td>
<td>Institute of Geography RAS, Russian Federation</td>
</tr>
<tr>
<td>SOMERVILLE, Richard</td>
<td>Scripps Institution of Oceanography, University of California, San Diego, USA</td>
</tr>
<tr>
<td>SOMOT, Samuel</td>
<td>Météo-France, Centre National de Recherches Météorologiques, France</td>
</tr>
<tr>
<td>SONG, Yuhe</td>
<td>Jet Propulsion Laboratory, USA</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>SPAHNI, Renato</td>
<td>Climate and Environmental Physics, Physics Institute, University of Bern Switzerland</td>
</tr>
<tr>
<td>SRINIVASAN, Jayaraman</td>
<td>Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science India</td>
</tr>
<tr>
<td>STAINFORTH, David</td>
<td>Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford UK</td>
</tr>
<tr>
<td>STAMMER, Detlef</td>
<td>Institut fuer Meereskunde Zentrum fuer Meeres und Klimaforschung Universitaet Hamburg Germany</td>
</tr>
<tr>
<td>STAINFORTH, Andrew</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office UK</td>
</tr>
<tr>
<td>STARK, Sheila</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office UK</td>
</tr>
<tr>
<td>STEFFEN, Will</td>
<td>Australian National University Australia</td>
</tr>
<tr>
<td>STEFFENKOV, Georgiy</td>
<td>Rutgers, The State University of New Jersey USA</td>
</tr>
<tr>
<td>STEVENSON, David</td>
<td>University of Edinburgh UK</td>
</tr>
<tr>
<td>STOCKER, Thomas F.</td>
<td>Climate and Environmental Physics, Physics Institute, University of Bern Switzerland</td>
</tr>
<tr>
<td>STONE, Daithi A.</td>
<td>University of Oxford UK, Canada</td>
</tr>
<tr>
<td>STOTT, Lowell D.</td>
<td>Department of Earth Sciences, University of Southern California USA</td>
</tr>
<tr>
<td>STOTT, Peter A.</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office UK</td>
</tr>
<tr>
<td>STOUFFER, Ronald J.</td>
<td>National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory USA</td>
</tr>
<tr>
<td>STUBER, Nicola</td>
<td>Department of Meteorology, University of Reading UK, Germany</td>
</tr>
<tr>
<td>SUDO, Kengo</td>
<td>Nagoya University Japan</td>
</tr>
<tr>
<td>SUGA, Toshio</td>
<td>Tohoku University Japan</td>
</tr>
<tr>
<td>SUMI, Akimasa</td>
<td>Center for Climate System Research, University of Tokyo Japan</td>
</tr>
<tr>
<td>SUPPIAH, Ramasamy</td>
<td>CSIRO Australia</td>
</tr>
<tr>
<td>SWEENEY, Colm</td>
<td>Princeton University USA</td>
</tr>
<tr>
<td>TADROSS, Mark</td>
<td>Climate Systems Analysis Group, University of Cape Town South Africa</td>
</tr>
<tr>
<td>TAKEMURA, Toshihiko</td>
<td>Research Institute for Applied Mechanics, Kyushu University Japan</td>
</tr>
<tr>
<td>TALLEY, Lynne D.</td>
<td>Scripps Institution of Oceanography, University of California, San Diego USA</td>
</tr>
<tr>
<td>TAMISIEA, Mark</td>
<td>Harvard-Smithsonian Center for Astrophysics USA</td>
</tr>
<tr>
<td>TAYLOR, Karl E.</td>
<td>Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory USA</td>
</tr>
<tr>
<td>TEBALDI, Claudia</td>
<td>National Center for Atmospheric Research USA</td>
</tr>
<tr>
<td>TENG, Haiyan</td>
<td>National Center for Atmospheric Research USA, China</td>
</tr>
<tr>
<td>TENNANT, Warren</td>
<td>South African Weather Service South Africa</td>
</tr>
<tr>
<td>TERRY, Laurent</td>
<td>European Centre for Research and Advanced Training in Scientific Computation France</td>
</tr>
<tr>
<td>TETT, Simon</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office UK</td>
</tr>
<tr>
<td>TEXTOR, Christiane</td>
<td>Laboratoire des Sciences du Climat et de l’Environnement France, Germany</td>
</tr>
<tr>
<td>THOMAS, Robert H.</td>
<td>EG&G Technical Services, Inc. and Centro de Estudios Cientificos (CECS) USA, Chile</td>
</tr>
<tr>
<td>THOMPSON, Lonnie</td>
<td>Ohio State University USA</td>
</tr>
<tr>
<td>THORNE, Peter</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office UK</td>
</tr>
<tr>
<td>TIAN, Yuhong</td>
<td>Georgia Institute of Technology USA, China</td>
</tr>
<tr>
<td>TRENBERTH, Kevin E.</td>
<td>Climate Analysis Section, National Center for Atmospheric Research USA</td>
</tr>
<tr>
<td>TSELIoudis, George</td>
<td>National Aeronautics and Space Administration, Goddard Institute for Space Studies, Columbia University USA, Greece</td>
</tr>
<tr>
<td>TSIMPLIS, Michael</td>
<td>National Oceanography Centre, University of Southampton UK, Greece</td>
</tr>
<tr>
<td>UNNIKRISHNAN, Alakkat S.</td>
<td>National Institute of Oceanography India</td>
</tr>
<tr>
<td>UPPALA, Sakari</td>
<td>European Centre for Medium-Range Weather Forecasts ECMWF</td>
</tr>
<tr>
<td>VAN DE WAL, Roderik Sylvester Willo</td>
<td>Institute for Marine and Atmospheric Research, Utrecht University Netherlands</td>
</tr>
<tr>
<td>VAN DORLAND, Robert</td>
<td>Royal Netherlands Meteorological Institute (KNMI) Netherlands</td>
</tr>
<tr>
<td>VAN NOU, Twan</td>
<td>Royal Netherlands Meteorological Institute (KNMI) Netherlands</td>
</tr>
<tr>
<td>VAUGHAN, David</td>
<td>British Antarctic Survey UK</td>
</tr>
</tbody>
</table>
ANNEX II

VILLALBA, Ricardo
Departmento de Dendrocronología e Historia Ambiental, Instituto Argentino de Novología, Glaciología y Ciencias Ambientales (IANIGLA - CRICYT)
Argentina

VOLODIN, Evgeny M.
Institute of Numerical Mathematics of Russian Academy of Sciences
Russian Federation

VOSE, Russell
National Oceanic and Atmospheric Administration, National Climatic Data Center
USA

WAELBROECK, Claire
Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l’Environnement, CNRS
France

WALSH, John
University of Alaska
USA

WANG, Bin
National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences
China

WANG, Bin
University of Hawaii
USA

WANG, Minghua
Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan
USA

WANG, Ray
Georgia Institute of Technology
USA

WANNINKHOF, Rik
Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration
USA

WARREN, Stephen
University of Washington
USA
WASHINGTON, Richard
UK, South Africa

WATTERSON, Ian G.
CSIRO Marine and Atmospheric Research
Australia

WEAVER, Andrew J.
School of Earth and Ocean Sciences, University of Victoria
Canada

WEBB, Mark
Hadley Centre for Climate Prediction and Research, Met Office
UK

WEISHEIMER, Antje
European Centre for Medium-Range Weather Forecasting and Free University, Berlin
ECMWF, Germany

WEISS, Ray
Scripps Institution of Oceanography, University of California, San Diego
USA

WHEELER, Matthew
Bureau of Meteorology Research Centre
Australia

WHETTON, Penny
CSIRO Marine and Atmospheric Research
Australia

WHORF, Tim
Scripps Institution of Oceanography, University of California, San Diego
USA

WIDMANN, Martin
GKSS Research Centre, Geesthacht and School of Geography, Earth and Environmental Sciences, University of Birmingham
Germany, UK

WIELICKI, Bruce
National Aeronautics and Space Administration, Langley Research Center
USA

WILDEY, Tom M.L.
National Center for Atmospheric Research
USA

WILBY, Rob
Environment Agency of England and Wales
UK

WILD, Martin
ETH Zürich, Institute for Atmospheric and Climate Sciences
Switzerland

WILD, Oliver
Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology
Japan, UK

WILES, Gregory
The College of Wooster
USA

WILLEBRAND, Jürgen
Leibniz Institut für Meereswissenschaften an der Universität Kiel
Germany

WILLIS, Josh
Jet Propulsion Laboratory
USA

WOFSY, Steven C.
Division of Engineering and Applied Science, Harvard University
USA

WONG, A.P.S.
School of Oceanography, University of Washington
USA, Australia

WONG, Takmeneng
National Aeronautics and Space Administration, Langley Research Center
USA

WOOD, Richard A.
Hadley Centre for Climate Prediction and Research, Met Office
UK

WOODWORTH, Philip
Proudman Oceanographic Laboratory
UK

WORB, Anthony
Australian Antarctic Division and Antarctic Climate and Ecosystems Cooperative Research Centre
Australia

WRIGHT, David
National Climate Centre, National Institute of Water and Atmospheric Research
New Zealand

WUERZ, David
National Oceanic and Atmospheric Administration, National Climatic Data Center
USA

WYMAN, Bruce L.
Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration
USA

XU, Li
Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan
USA, China

YAMADA, Tomomi
Japanese Society of Snow and Ice
Japan

YASHAYAEV, Igor
Maritimes Region of the Department of Fisheries and Oceans
Canada

YASUDA, Ichiro
University of Tokyo
Japan

YASHIYAEV, Igor
Meteorological Research Institute
Japan

YU, Ruccong
China Meteorological Administration
China

YUKIMOTO, Seiji
Meteorological Research Institute
Japan

ZACHOS, James
University of California, Santa Cruz
USA
ZHAI, Panmao
National Climate Center, China
Meteorological Administration
China

ZHANG, De’er
National Climate Center, China
Meteorological Administration
China

ZHANG, Tingjun
National Snow and Ice Data Center, CIRES,
University of Colorado at Boulder
USA, China

ZHANG, Xiaoye
Chinese Academy of Meteorological
Sciences, Centre for Atmosphere
Watch & Services
China

ZHANG, Xuebin
Climate Research Division,
Environment Canada
Canada

ZHAO, Lin
Cold and Arid Regions Environmental
and Engineering Research Institute,
Chinese Academy of Science
China

ZHAO, Zong-Ci
National Climate Center, China
Meteorological Administration
China

ZHENGTENG, Guo
Institute of Geology and Geophysics,
Chinese Academy of Science
China

ZHOU, Liming
Georgia Institute of Technology
USA, China

ZORITA, Eduardo
Helmholtz Zentrum Geesthacht
Germany, Spain

ZWIERS, Francis
Canadian Centre for Climate Modelling
and Analysis, Environment Canada
Canada
Annex III

Reviewers of the IPCC WGI Fourth Assessment Report

Algeria

AMAR, Matari
IHFR, Oran

MATARI, Amar
IHFR, Oran

Australia

CAI, Wenju
CSIRO Marine and Atmospheric Research

CHURCH, John
CSIRO Marine and Atmospheric Research and Ecosystems Cooperative Research Centre

COLMAN, Robert
Bureau of Meteorology Research Centre

ENTING, Ian
University of Melbourne

GIFFORD, Roger
CSIRO Plant Industry

HIRST, Anthony
CSIRO Marine and Atmospheric Research

HOBBSINS, Michael
Australian National University

HOWARD, William
Antarctic Climate and Ecosystems Cooperative Research Centre

HUNTER, John
Antarctic Climate and Ecosystems Cooperative Research Centre

JONES, Roger
CSIRO Marine and Atmospheric Research

KININMONTH, William

LYNCH, Amanda H.
School of Geography and Environmental Science, Monash University

MANTON, Michael
Bureau of Meteorology Research Centre

MCAVANEY, Bryant
Bureau of Meteorology Research Centre

MCDougALL, Trevor
CSIRO Marine and Atmospheric Research

MCGREGOR, John
CSIRO Marine and Atmospheric Research

MCNEIL, Ben
University of New South Wales

MOISE, Aurel
Bureau of Meteorology Research Centre

NICHOLLS, Neville
Monash University

PITMAN, Andrew
Department of Physical Geography, Macquarie University

RAUPACH, Michael
CSIRO

RINTOUL, Stephen
CSIRO, Marine and Atmospheric Research and Antarctic Climate and Ecosystems Cooperative Research Centre

RODERICK, Michael
Australian National University

ROTSTAYN, Leon
CSIRO Marine and Atmospheric Research

SIEMS, Steven
Monash University

SIMMONDS, Ian
University of Melbourne

TREWIN, Blair
National Climate Centre, Bureau of Meteorology

VAN OMMEN, Tas
Australian Antarctic Division

WALSH, Kevin
School of Earth Sciences, University of Melbourne

WATKINS, Andrew
National Climate Centre, Bureau of Meteorology

WHEELER, Matthew
Bureau of Meteorology Research Centre

WHITE, Neil
CSIRO Marine and Atmospheric Research

Austria

BÖHM, Reinhard
Central Institute for Meteorology and Geodynamics

KIRCHENGAST, Gottfried
University of Graz

O’NEILL, Brian
IIASA and Brown University

RADUNSKY, Klaus
Umweltbundesamt

Belgium

BERGER, André
Université catholique de Louvain, Institut d’Astronomie et de Géophysique G. Lemaitre

DE BACKER, Hugo
Royal Meteorological Institute

GOOSSSE, Hugues
Université catholique de Louvain

JANSSENS, Ivan A.
University of Antwerp

LOUTRE, Marie-France
Université catholique de Louvain, Institut d’Astronomie et de Géophysique G. Lemaitre

VAN LIPZIG, Nicole
Katholieke Universiteit Leuven

Benin

BOKO, Michel
Université de Bourgogne

GUENDEHOU, G. H. Sabin
Benin Centre for Scientific and Technical Review

VISSIN, Expédition Wilfrid
LÉCREDE/DGAT/FLASH/
Université d’Abomey-Calavi

YABI, Ibouraïma
Laboratoire de Climatologie/DGAT/UAC

Brazil

CARDIA SIMÕES, Jefferson
Departamento de Geografia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul

MARENGO ORSINI, Jose Antonio
CPTEC/INPE

Canada

BELTRAMI, Hugo
St. Francis Xavier University

BROWN, Ross
Environment Canada

Expert reviewers are listed by country. Experts from international organizations are listed at the end.
Annex III

CAYA, Daniel
Consortium Ouranos

CHYLEK, Petr
Dalhousie University, Departments of Physics and Oceanography

CLARKE, Garry
Earth and Ocean Sciences, University of British Columbia

CLARKE, R. Allyn
Bedford Institute of Oceanography

CULLEN, John
Dalhousie University

DERKSEN, Chris
Climate Research Branch, Meteorological Service of Canada

FERNANDES, Richard
Canada Centre for Remote Sensing, Natural Resources Canada

FORBES, Donald L.
Natural Resources Canada, Geological Survey of Canada

FREELAND, Howard
Department of Fisheries and Oceans

GARRETT, Chris
University of Victoria

HARVEY, Danny
University of Toronto

ISAAC, George
Environment Canada

JAMES, Thomas
Geological Survey of Canada, Natural Resources Canada

LEWIS, C.F. Michael
Geological Survey of Canada, Natural Resources Canada

MACDONALD, Robie
Department of Fisheries and Oceans

MATTHEWS, H. Damon
University of Calgary and Concordia University

MCINTYRE, Stephen
University of Toronto

MCKITRICK, Ross
University of Guelph

PELTIER, Wm. Richard
Department of Physics, University of Toronto

SAVARD, Martine M.
Geological Survey of Canada, Natural Resources Canada

SMITH, Sharon
Geological Survey of Canada, Natural Resources Canada

TRISHCHENKO, Alexander P.
Canada Centre for Remote Sensing, Natural Resources Canada

WANG, Shusen
Canada Centre for Remote Sensing, Natural Resources Canada

WANG, Xiaolan L.
Climate Research Branch, Meteorological Service of Canada

ZWIERS, Francis
Canadian Centre for Climate Modelling and Analysis, Environment Canada

Chile

ACEITUNO, Patricio
Department Geophysics, Universidad de Chile

China

CAI, Zucong
Institute of Soil Science, Chinese Academy of Sciences

CHAN, Johnny
City University of Hong Kong

DONG, Zhaqian
Polar Research Institute of China

GONG, Daoyi
College of Resources Science and Technology, Beijing Normal University

GUO, Xueliang
Institute of Atmospheric Physics, Chinese Academy of Sciences

LAM, Chiu-Ying
Hong Kong Observatory

REN, Guoyu
National Climate Center, China Meteorological Administration

SHI, Guang-Yu
Institute of Atmospheric Physics, Chinese Academy of Sciences

SU, Jilan
Lab of Ocean Dynamic Processes and Satellite Oceanography, Second Institute of Oceanography, State Oceanic Administration

SUN, Junying
Centre for Atmosphere Watch and Services, Chinese Academy of Meteorological Sciences, CMA

WANG, Dongxiao
South China Sea Institute of Oceanology, Chinese Academy of Sciences

WANG, Mingxing
Institute of Atmospheric Physics, Chinese Academy of Sciences

XIE, Zhonghui
Institute of Atmospheric Physics, Chinese Academy of Sciences

XU, Xiaobin
Chinese Academy of Meteorological Sciences

YU, Rucong
China Meteorological Administration

ZHAO, Zong-Ci
National Climate Center, China Meteorological Administration

ZHOU, Tianjun
Institute of Atmospheric Physics, Chinese Academy of Sciences

Denmark

GLEISNER, Hans
Atmosphere Space Research Division, Danish Met. Institute

STENDELL, Martin
Danish Meteorological Institute

Egypt

EL-SHAHAWY, Mohamed
Cairo University, Egyptian Environmental Affairs Agency

Estonia

JAAGUS, Jaak
University of Tartu

Fiji

LAL, Murari
University of the South Pacific

Finland

CARTER, Timothy
Finnish Environment Institute

KORTELAINEN, Pirkko
Finnish Environment Institute

KULMALA, Markku
University of Helsinki

LAAKSONEN, Ari
University of Kuopio

MÄNNE, Raisa
Finnish Forest Research Institute

RAISÄNEN, Jouko
Department of Physical Sciences, University of Helsinki

SAVOLAINEN, Ilkka
Technical Research Centre of Finland

France

BONY, Sandrine
Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace

BOUSQUET, Philippe
Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l’Environnement
Annex III

BRACONNOT, Pascale
Pascale Braconnot Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l’Environnement

CAZENAVE, Anny
Laboratoire d’Études en Géophysique et Océanographie Spatiale (LEGOS), CNES

CLERBAUX, Cathy
Centre National de Recherche Scientifique

CORTIJO, Elsa
Laboratoire des Sciences du Climat et de l’Environnement, CNRS-CEA-UVSQ

DELECLUSE, Pascale
CEA, CNRS

DEQUÉ, Michel
Météo-France

DUFRESNE, Jean-Louis
Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace

FRIEDLINGSTEIN, Pierre
Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l’Environnement

GENTHON, Christophe
Centre National de Recherche Scientifique, Laboratoire de Glaciologie et Géophysique de l’Environnement

GUIYARDI, Eric
Laboratoire des Sciences du Climat et de l’Environnement

GUIOT, Joel
CEREGE, Centre National de Recherche Scientifique

HAUGLUSTAINE, Didier
Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ

JOUSSAUME, Sylvie
Centre National de Recherche Scientifique

KANDEL, Robert
Laboratoire de Météorologie Dynamique, École Polytechnique

KHOISRI, Myriam
Institut de Recherche Pour le Développement

LABEYRIE, Laurent
Laboratoire des Sciences du Climat et de l’Environnement

MARTIN, Eric
Météo-France

MOISSELIN, Jean-Marc
Météo-France

PAILLARD, Didier
Laboratoire des Sciences du Climat et de l’Environnement

PETIT, Michel
CGTI

PLANTON, Serge
Météo-France

RAMSTEIN, Gilles
Laboratoire des Sciences du Climat et de l’Environnement

SCHULZ, Michael
Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ

SEGUN, Bernard
INRA

TEXTOR, Christiane
Laboratoire des Sciences du Climat et de l’Environnement

WAELBROECK, Claire
Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l’Environnement, CNRS

Germany

BANGE, Hermann W.
Leibniz Institut für Meereswissenschaften, IFM-GEOMAR

BAUER, Eva
Potsdam Institute for Climate Impact Research

BECK, Christoph
Global Precipitation Climatology Centre

BROVKIN, Victor
Potsdam Institute for Climate Impact Research

CHURKINA, Galina
Max Planck Institute for Biogeochemistry

COTRIM DA CUNHA, Leticia
Max-Planck-Institut für Biogeochemie

DOTZEK, Nikolai
Max-Planck-Institut für Biogeochemie

GANGOPALSKY, Andrey
Potsdam Institute for Climate Impact Research

GIOGETA, Marco A.
Max Planck Institute for Meteorology

GRASSE, Hartmut
Max Planck Institute for Meteorology

GREWE, Volker
Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre

FEICHTER, Johann
Max Planck Institute for Meteorology

GANNON, J. F.
Potsdam Institute for Climate Impact Research

GRIESSER, Jürgen
Deutscher Wetterdienst, Global Precipitation Climatology Centre

HARE, William
Potsdam Institute for Climate Impact Research

HELD, Hermann
Potsdam Institute for Climate Impact Research

HOFZUMAHAUS, Andreas
Forschungszentrum Jülich, Institut für Chemie und Dynamik der Geosphäre II: troposphäre

KOPPMANN, Ralf
Institut für Chemie und Dynamik der Geosphäre, Institut II: Troposphäre, Forschungszentrum Juelich, Juelich, Germany

LATIF, Mojib
Leibniz Institut für Meereswissenschaften, IFM-GEOMAR

LEWIEDEL, Jos
Max Planck Institute for Chemistry

LEVERMAN, Anders
Potsdam Institute for Climate Impact Research

LINGER, Stephan
Europäische Akademie Bad Neuenahr-Ahrweiler GmbH

LUCHT, Wolfgang
Potsdam Institute for Climate Impact Research

MARTZKE, Jochem
Max Planck Institute for Meteorology

MATA, Louis Jose
Center for Development Research, University of Bonn

MEINSHAUSEN, Malte
Potsdam Institute for Climate Impact Research

MICHAELOWA, Axel
Hamburg Institute of International Economics

MÜLLER, Rolf
Research Centre Jülich

RAHMSTORF, Stefan
Potsdam Institute for Climate Impact Research

RHEIN, Monika
Institute for Environmental Physics, University Bremen

SAUSEN, Robert
Deutsches Zentrum für Luft und Raumfahrt, Institut für Physik der Atmosphäre

SCHOENWIESE, Christian-D.
University Frankfurt a.M., Institute for Atmosphere and Environment

SCHOTT, Friedrich
Leibniz Institut für Meereswissenschaften, IFM-GEOMAR

971
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCHULZ, Michael</td>
<td>University of Bremen</td>
</tr>
<tr>
<td>SCHÜTZENMEISTER, Falk</td>
<td>Technische Universität Dresden, Institut für Soziologie</td>
</tr>
<tr>
<td>STAMMER, Detlef</td>
<td>Institut für Meereskundezentrum für Meeres und Klimaforschung, Universität Hamburg</td>
</tr>
<tr>
<td>TEGEN, Ina</td>
<td>Institute for Tropospheric Research</td>
</tr>
<tr>
<td>VÖLKER, Christoph</td>
<td>Alfred Wegener Institute for Polar and Marine Research</td>
</tr>
<tr>
<td>WEFER, Gerold</td>
<td>University of Bremen, Research Center Ocean Margins</td>
</tr>
<tr>
<td>WURZLER, Sabine</td>
<td>North Rhine-Westphalia State Environment Agency</td>
</tr>
<tr>
<td>ZENK, Walter</td>
<td>Leibniz Institut für Meereswissenschaften, IFM-GEMMAR</td>
</tr>
<tr>
<td>ZOLINA, Olga</td>
<td>Meteorologisches Institut der Universität Bonn</td>
</tr>
<tr>
<td>ZORITA, Eduardo</td>
<td>Helmholtz Zentrum Geesthacht</td>
</tr>
<tr>
<td>ARTALE, Vincenzo</td>
<td>Italian National Agency for New Technologies, Energy and the Environment (ENEA)</td>
</tr>
<tr>
<td>BALDI, Marina</td>
<td>Consiglio Nazionale delle Ricerche (CNR), Inst of Biometeorology</td>
</tr>
<tr>
<td>BERGAMASCHI, Peter</td>
<td>European Commission, Joint Research Centre, Institute for Environment and Sustainability</td>
</tr>
<tr>
<td>BRUNETTI, Michele</td>
<td>Istituto di Scienze dell’atmosfera e del Clima (ISAC) Consiglio Nazionale delle Ricerche (CNR)</td>
</tr>
<tr>
<td>CAMPOSTRINI, Pierpaolo</td>
<td>Corila</td>
</tr>
<tr>
<td>COLOMBO, Tiziano</td>
<td>Italian Met Service</td>
</tr>
<tr>
<td>CORTI, Susanna</td>
<td>Istituto di Scienze dell’atmosfera e del Clima (ISAC) Consiglio Nazionale delle Ricerche (CNR)</td>
</tr>
<tr>
<td>DESIATO, Franco</td>
<td>Agenzia per la protezione dell’ambiente e per i servizi tecnici (APAT)</td>
</tr>
<tr>
<td>DRAGONI, Walter</td>
<td>Perugia University</td>
</tr>
<tr>
<td>ETOPE, Giuseppe</td>
<td>Istituto Nazionale di Geofisica e Vulcanologia</td>
</tr>
<tr>
<td>FACCHINI, Maria Cristina</td>
<td>Consiglio Nazionale delle Ricerche (CNR)</td>
</tr>
<tr>
<td>GIORGi, Filippo</td>
<td>Abdus Salam International Centre for Theoretical Physics</td>
</tr>
<tr>
<td>LIONELLO, Piero</td>
<td>Univ. of Lecce, Dept.”Scienza dei materiali”</td>
</tr>
<tr>
<td>MARIOTTI, Annarita</td>
<td>Italian National Agency for New Technologies, Energy and the Environment (ENEA) and Earth System Science Interdisciplinary Center (ESSIC-USA)</td>
</tr>
<tr>
<td>MOSETTI, Renzo</td>
<td>OGS</td>
</tr>
<tr>
<td>NANNI, Teresa</td>
<td>Istituto di Scienze dell’atmosfera e del Clima (ISAC) Consiglio Nazionale delle Ricerche (CNR)</td>
</tr>
<tr>
<td>RUTI, Paolo Michele</td>
<td>Italian National Agency for New Technologies, Energy and the Environment</td>
</tr>
<tr>
<td>SANTINELLI, Chiara</td>
<td>Consiglio Nazionale delle Ricerche (CNR)</td>
</tr>
<tr>
<td>VAN DINGENEN, Rita</td>
<td>European Commission, Joint Research Centre, Institute for Environment and Sustainability</td>
</tr>
<tr>
<td>VIGNUDELLI, Stefano</td>
<td>Consiglio Nazionale delle Ricerche (CNR), Istituto di Biofisica</td>
</tr>
<tr>
<td>ALEXANDROV, Georgii</td>
<td>National Institute for Environmental Studies</td>
</tr>
<tr>
<td>ANNAN, James</td>
<td>Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology</td>
</tr>
<tr>
<td>AOKI, Teruo</td>
<td>Meteorological Research Institute, Japan Meteorological Agency</td>
</tr>
<tr>
<td>AWAIJi, Toshiyuki</td>
<td>Kyoto University</td>
</tr>
<tr>
<td>EMORI, Seita</td>
<td>National Institute for Environmental Studies and Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology</td>
</tr>
<tr>
<td>HARGREAVES, Julia</td>
<td>Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology</td>
</tr>
<tr>
<td>HAYASAKA, Tadahiro</td>
<td>Research Institute for Humanity and Nature</td>
</tr>
<tr>
<td>IKEDA, Motoyoshi</td>
<td>Hokkaido University</td>
</tr>
<tr>
<td>ITOH, Kiminori</td>
<td>Yokohama National University</td>
</tr>
<tr>
<td>RAHMZADEH, Fatemeh</td>
<td>Atmospheric Science & Meteorological Research Center (ASMERC), I.R. of Iran Meteorological Organization (IRIMO)</td>
</tr>
<tr>
<td>KIMOTO, Masahide</td>
<td>Center for Climate System Research, University of Tokyo</td>
</tr>
<tr>
<td>KITOH, Akio</td>
<td>First Research Laboratory, Climate Research Department, Meteorological Research Institute, Japan Meteorological Agency</td>
</tr>
<tr>
<td>KOBAYASHI, Shigeki</td>
<td>TRDL</td>
</tr>
<tr>
<td>KONDO, Hiroki</td>
<td>Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology</td>
</tr>
<tr>
<td>MAKI, Takashi</td>
<td>Meteorological Research Institute, Japan Meteorological Agency</td>
</tr>
</tbody>
</table>
Annex III

MAKSYUTOV, Shamil
National Institute for Environmental Studies

MARUYAMA, Koki
CRIEPI

MATSUNO, Taroh
Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology

MIKAMI, Masao
Meteorological Research Institute, Japan Meteorological Agency

MIKAMI, Takehiko
Tokyo Metropolitan University

NAKAIJIMA, Teruyuki
Center for Climate System Research, University of Tokyo

NAKAWO, Masayoshi
Research Institute for Humanity and Nature

NODA, Akira
Meteorological Research Institute, Japan Meteorological Agency

OHATO, Tetsuo
JAMSTEC

ONO, Tsuneo
Hokkaido National Fisheries Research Institute, Fisheries Research Agency

SASAKI, Hidetaka
Meteorological Research Institute, Japan Meteorological Agency

SATO, Yasuo
Meteorological Research Institute, Japan Meteorological Agency

SEKIYA, Akira
National Institute of Advanced Industrial Science and Technology (AIST)

SHINODA, Masato
Tottori University, Arid Land Research Center

SUGA, Toshio
Tohoku University

SUGI, Masato
Meteorological Research Institute, Japan Meteorological Agency

TOKIOKA, Tatsushi
Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology

TOKUHASHI, Kazuaki
National Institute of Advanced Industrial Science and Technology (AIST)

TSUSHIMA, Yoko
Japan Agency for Marine-Earth Science and Technology

UCHIYAMA, Akihiro
Meteorological Research Institute, Japan Meteorological Agency

YAMAMOTO, Susumu
Graduate School of Environmental Science, Okayama University

YAMANOUCHI, Takashi
National Institute of Polar Research

YAMASAKI, Masanori
Japan Agency for Marine-Earth Science and Technology

YAMAZAKI, Koji
Graduate School of Environmental Science, Hokkaido University

YOKOYAMA, Yusuke
Department of Earth and Planetary Sciences, University of Tokyo

TSUTSUMI, Yukitomo
Meteorological Research Institute, Japan Meteorological Agency

Republic of Korea

KIM, Kyung-Ryul
Seoul National University, School of Earth and Environmental Sciences

Mexico

LLUCH-BELDA, Daniel
Centro Interdisciplinario de Ciencias Marinas del IAP

Mozambique

QUEFACE, Antonio Joaquim
Physics Department, Eduardo Mondlane University

Netherlands, Antilles and Aruba

MARTIS, Albert
Climate Research Center, Meteorological Service Netherlands, Antilles & Aruba

Netherlands

BAEDE, Alphonse
Royal Netherlands Meteorological Institute (KNMI) and Ministry of Housing, Spatial Planning and the Environment

BURGERS, Gerrit
Royal Netherlands Meteorological Institute (KNMI)

DE BRUIN, Henk
Meteorology and Air Quality Group, Wageningen University

DE WIT, Florens

DILLINGH, Douwe
National Institute for Coastal and Marine Management / RIKZ

HAARSM, Reindert
Royal Netherlands Meteorological Institute (KNMI)

HAZELEGER, Wilco
Royal Netherlands Meteorological Institute (KNMI)

HOLTSLAG, Albert A. M.
Wageningen University

KROON, Dick
Vrije Universiteit, Amsterdam

SIEGMUND, Peter
Royal Netherlands Meteorological Institute (KNMI)

STERL, Andreas
Royal Netherlands Meteorological Institute (KNMI)

VAN AKEN, Hendrik M.
Royal Netherlands Institute for Sea Research (NIOZ)

VAN DE WAL, Rodrik Sylvester Willo
Institute for Marine and Atmospheric Research, Utrecht University

VAN DEN HURK, Bart
Royal Netherlands Meteorological Institute (KNMI)

VAN NOOIJ, Twan
Royal Netherlands Meteorological Institute (KNMI)

VAN VELTHOVEN, Peter
Royal Netherlands Meteorological Institute (KNMI)

VANDENBERGHE, Jef
Vrije Universiteit, Inst. of Earth Sciences

VEEFKIND, Pepijn
Royal Netherlands Meteorological Institute (KNMI)

VELDERS, Guus J.M.
Netherlands Environmental Assessment Agency (MNP)

New Zealand

ALLOWAY, Brent
Institute of Geological and Nuclear Sciences

BARRETT, Peter
Antarctic Research Centre, Victoria University of Wellington

BOEKER, Greg
National Institute of Water and Atmospheric Research

BOWEN, Melissa
National Institute of Water and Atmospheric Research

CRAMPTON, James
Institute of Geological and Nuclear Sciences

GRAY, Vincent
Climate Consultant

LASSEY, Keith
National Institute of Water and Atmospheric Research
LAW, Cliff
National Institute of Water and Atmospheric Research

MACLAREN, Piers
NZ Forest Research Institute

MULAN, A. Brett
National Institute of Water and Atmospheric Research

NODDER, Scott
National Institute of Water and Atmospheric Research

RENWICK, James A.
National Institute of Water and Atmospheric Research

SALINGER, M. James
National Institute of Water and Atmospheric Research

SHULMEISTER, James
University of Canterbury

WILLIAMS, Paul W.
Auckland University

WRATT, David
National Climate Centre, National Institute of Water and Atmospheric Research

Norway

BENESTAD, Rasmus
Norwegian Meteorological Institute

FUGLESTVEDT, Jan
Centre for International Climate and Environmental Research (CICERO)

GODAL, Odd
Department of Economics, University of Bergen

HANSEN-BAUER, Inger
Norwegian Meteorological Institute

ISAKSEN, Ketil
Norwegian Meteorological Institute

JOHANNESSEN, Ols M.
Nansen Environmental and Remote Sensing Center

KRISTJÁNSSON, Jón Egill
University of Oslo

NESJE, Atle
Department of Earth Science, University of Bergen

PAASCHE, Øyvind
Bjerknes Centre for Climate Research

Peru

GAMBOA, Nadia
Pontificia Universidad Carolina del Perú

Romania

BOJARIU, Roxana
National Institute of Meteorology and Hydrology (NIMH)

BORONEANT, Constanza-Eunilia
National Meteorological Administration

BUSUIOC, Aristid
National Meteorological Administration

MARES, Constantin
Romanian Academy, Geodynamics Institute

MARES, Ileana
Romanian Academy of Technical Studies

Russian Federation

MELESHKO, Valentin
Voeykov Main Geophysical Observatory

Slovakia

LAPIN, Milan
Slovak National Climate Program

Spain

AGUILAR, Enric
Climate Change Research Group, Universitat Rovira i Virgili de Tarragona

BLADE, Ileana
Department of Astronomy and Meteorology, University of Barcelona

BRUNET, Manola
University Rovira i Virgili

CALVO COSTA, Eva
Institut de Ciències del Mar

GARCÍA-HERRERA, Ricardo
Universidad Complutense de Madrid

GONZÁLEZ-ROUCO, Jesús Fidel
Universidad Complutense de Madrid

LAVIN, Alicia M.
Instituto Español de Oceanografía

MARTIN-VIDE, Javier
Physical Geography of the University of Barcelona

MONTOYA, Marisa
Dpto. Astrofisica y Fisica de la Atmosfera, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid

PELEJERO, Carlés
Institut de Ciències del Mar, CMIMA-CSIC

RIBERA, Pedro
Universidad Pablo de Olavide

Sweden

HOLMLUND, Per
Stockholm University

KJELLSTRÖM, Erik
Swedish Meteorological and Hydrological Institute

LECK, Caroline
Department of Meteorology, Stockholm University

RUHMANN, Markku
Rosby Centre, Swedish Meteorological and Hydrological Institute

Switzerland

APPENZELLER, Christof
Federal Office of Meteorology and Climateology MeteoSwiss

BLUNIER, Thomas
Climate and Environmental Physics, University of Bern

BRÖNNIMANN, Stefan
ETH Zürich

CASTY, Carlo
Climate and Environmental Physics

CHERUBINI, Paolo
Swiss Federal Research Institute WSL

ESPER, Jan
Swiss Federal Research Institute WSL

FREL, Christoph
Federal Office of Meteorology and Climatology MeteoSwiss

GHOSH, Sucharita
Swiss Federal Research Institute WSL

HAEBERLI, Wilfried
Geography Department, University of Zürich

JOOS, Fortunat
Climate and Environmental Physics, Physics Institute, University of Bern

KNUTTI, Reto
Climate and Global Dynamics Division, National Center for Atmospheric Research

LUTERBACHER, Jürg
Institute of Geography, Climatology and Meteorology, and National Centre of Competence in Research on Climate, University of Bern

MARCOLLI, Claudia
ETH Zürich, Institute for Atmosphere and Climate

PETER, Thomas
ETH Zürich

PHILIPONA, Rolf
Observatory Davos

PLATTNER, Gian-Kasper
Climate and Environmental Physics, Physics Institute, University of Bern

RAIBLE, C. Christoph
Climate and Environmental Physics, University of Bern
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>REBETEZ, Martine</td>
<td>Swiss Federal Research Institute WSL</td>
</tr>
<tr>
<td>ROSSI, Michel J.</td>
<td>Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Pollution Atmosphérique et Sol</td>
</tr>
<tr>
<td>ROZANOV, Eugene</td>
<td>IAC ETHZ and PMOD/WRC</td>
</tr>
<tr>
<td>SCHÄR, Christoph</td>
<td>ETH Zürich, Institute for Atmospheric and Climate Science</td>
</tr>
<tr>
<td>SIDDALL, Mark</td>
<td>Climate and Environmental Physics, University of Bern</td>
</tr>
<tr>
<td>SPAHNI, Renato</td>
<td>Climate and Environmental Physics, Institute, University of Bern</td>
</tr>
<tr>
<td>STAHELIN, Johannes</td>
<td>ETH Zürich</td>
</tr>
<tr>
<td>STOCKER, Thomas F.</td>
<td>Climate and Environmental Physics, University of Bern</td>
</tr>
<tr>
<td>WANNER, Heinz</td>
<td>National Centre of Competence in Research on Climate, University of Bern</td>
</tr>
<tr>
<td>WILD, Martin</td>
<td>ETH Zürich, Institute for Atmospheric and Climate Science</td>
</tr>
<tr>
<td>Thailand</td>
<td></td>
</tr>
<tr>
<td>GARIVAIT, Savitri</td>
<td>The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi</td>
</tr>
<tr>
<td>LIMMEECHOKCHAI, Bundit</td>
<td>Sirindhorn International Institute of Technology, Thammasat Univ.</td>
</tr>
<tr>
<td>Togo</td>
<td></td>
</tr>
<tr>
<td>AJAVON, Ayite-Lo N.</td>
<td>Atmospheric Chemistry Laboratory</td>
</tr>
<tr>
<td>UK</td>
<td></td>
</tr>
<tr>
<td>ALEXANDER, Lisa</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>ALLAN, Richard</td>
<td>Environmental Systems Science Centre, University of Reading</td>
</tr>
<tr>
<td>BANKS, Helene</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>BETTS, Richard A.</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>BODAS-SALCEDO, Alejandro</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>BOUCHER, Olivier</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>BROWN, Simon</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>BRYDEN, Harry</td>
<td>University of Southampton</td>
</tr>
<tr>
<td>CAESAR, John</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>CARSLAW, Kenneth</td>
<td>University of Leeds</td>
</tr>
<tr>
<td>COLLINS, Matthew</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>CONNOLLEY, William</td>
<td>British Antarctic Survey</td>
</tr>
<tr>
<td>COURTNEY, Richard S.</td>
<td>European Science and Environment Forum</td>
</tr>
<tr>
<td>CRUCIFIX, Michel</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>FALLOON, Pete</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>FOLLAND, Christopher</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>FORSTER, Piers</td>
<td>School of Earth and Environment, University of Leeds</td>
</tr>
<tr>
<td>FOWLER, Hayley</td>
<td>Newcastle University</td>
</tr>
<tr>
<td>GEDNEY, Nicola</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>GILLETT, Nathan P.</td>
<td>Climatic Research Unit, School of Environmental Sciences, University of East Anglia</td>
</tr>
<tr>
<td>GRAY, Lesley</td>
<td>Reading University</td>
</tr>
<tr>
<td>GREGORY, Jonathan M.</td>
<td>Department of Meteorology, University of Reading and Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>GRIGGS, David</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>HAIGH, Joanna</td>
<td>Imperial College London</td>
</tr>
<tr>
<td>HARANGOZO, Steve</td>
<td>British Antarctic Survey</td>
</tr>
<tr>
<td>HAWKINS, Stephen J.</td>
<td>The Marine Biological Association of the UK</td>
</tr>
<tr>
<td>HIGHWOOD, Eleanor</td>
<td>University of Reading</td>
</tr>
<tr>
<td>HINDMARSH, Richard</td>
<td>British Antarctic Survey</td>
</tr>
<tr>
<td>HOSKINS, Brian J.</td>
<td>Department of Meteorology, University of Reading</td>
</tr>
<tr>
<td>HOUSE, Joanna</td>
<td>Quantifying and Understanding the Earth System Programme, University of Bristol</td>
</tr>
<tr>
<td>INGRAM, William</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>JOHNS, Timothy</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>JONES, Christopher</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>JONES, Gareth S.</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>JONES, Philip D.</td>
<td>Climatic Research Unit, School of Environmental Sciences, University of East Anglia</td>
</tr>
<tr>
<td>JOSEY, Simon</td>
<td>National Oceanography Centre, University of Southampton</td>
</tr>
<tr>
<td>KING, John</td>
<td>British Antarctic Survey</td>
</tr>
<tr>
<td>LE QUÉRÉ, Corrine</td>
<td>University of East Anglia and British Antarctic Survey</td>
</tr>
<tr>
<td>LEE, David</td>
<td>Manchester Metropolitan University</td>
</tr>
<tr>
<td>LOWE, Jason</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>MARSH, Robert</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>MCCARTHY, Mark</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>MCDONALD, Ruth</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>MITCHELL, John</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>Name</td>
<td>Institution/Department</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>MURPHY, James</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>NICHOLLS, Robert</td>
<td>School of Civil Engineering and the Environment, University of Southampton</td>
</tr>
<tr>
<td>PARKER, David</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>PRENTICE, Iain Colin</td>
<td>Quantifying and Understanding the Earth System Programme, Department of Earth Sciences, University of Bristol</td>
</tr>
<tr>
<td>RAPER, Sarah</td>
<td>Manchester Metropolitan University</td>
</tr>
<tr>
<td>RAYNER, Nick</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>REISINGER, Andy</td>
<td>IPCC Synthesis Report TSU</td>
</tr>
<tr>
<td>RIDLEY, Jeff</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>ROBERTS, C. Neil</td>
<td>University of Plymouth, School of Geography</td>
</tr>
<tr>
<td>RODGER, Alan</td>
<td>British Antarctic Survey</td>
</tr>
<tr>
<td>ROScoe, Howard</td>
<td>British Antarctic Survey</td>
</tr>
<tr>
<td>ROUGIER, Jonathan</td>
<td>Durham University</td>
</tr>
<tr>
<td>ROWELL, Dave</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>SENIOR, Catherine</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>SEXTON, David</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>SHINE, Keith</td>
<td>University of Reading</td>
</tr>
<tr>
<td>Slingo, Julia</td>
<td>National Centre for Atmospheric Science, University of Reading</td>
</tr>
<tr>
<td>Smith, Leonard A.</td>
<td>London School of Economics</td>
</tr>
<tr>
<td>SroKosz, Meric</td>
<td>National Oceanography Centre</td>
</tr>
<tr>
<td>Stark, Sheila</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>Stephenson, David</td>
<td>Department of Meteorology, University of Reading</td>
</tr>
<tr>
<td>Stone, Daithi A.</td>
<td>University of Oxford</td>
</tr>
<tr>
<td>Stott, Peter A.</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>THORNE, Peter</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>Tsimplis, Michael</td>
<td>National Oceanography Centre, University of Southampton</td>
</tr>
<tr>
<td>Turner, John</td>
<td>British Antarctic Survey</td>
</tr>
<tr>
<td>Vaughan, David</td>
<td>British Antarctic Survey</td>
</tr>
<tr>
<td>Vellinga, Michael</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>Wasdell, David</td>
<td>Meridian Programme</td>
</tr>
<tr>
<td>Williams, Keith</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>Wolff, Eric</td>
<td>British Antarctic Survey</td>
</tr>
<tr>
<td>Wood, Richard A.</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>Woodworth, Philip</td>
<td>Proudman Oceanographic Laboratory</td>
</tr>
<tr>
<td>Wu, Peili</td>
<td>Hadley Centre for Climate Prediction and Research, Met Office</td>
</tr>
<tr>
<td>Uruguay</td>
<td></td>
</tr>
<tr>
<td>Bidegain, Mario</td>
<td>Universidad de la Republica</td>
</tr>
<tr>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>Alexander, Becky</td>
<td>University of Washington</td>
</tr>
<tr>
<td>Alexander, Michael</td>
<td>National Oceanic and Atmospheric Administration, National Severe Storms Laboratory</td>
</tr>
<tr>
<td>Alley, Richard B.</td>
<td>Department of Geosciences, Pennsylvania State University</td>
</tr>
<tr>
<td>Anderson, David M.</td>
<td>National Center for Atmospheric Research, Paleoclimatology</td>
</tr>
<tr>
<td>Anderson, Theodore</td>
<td>University of Washington</td>
</tr>
<tr>
<td>Anderson, Wilmer</td>
<td>University of Wisconsin, Madison, Physics Department</td>
</tr>
<tr>
<td>Anthes, Richard</td>
<td>University Corporation for Atmospheric Research</td>
</tr>
<tr>
<td>Arritt, Raymond</td>
<td>Iowa State University</td>
</tr>
<tr>
<td>Averyt, Kristen</td>
<td>IPCC WGI TSU, National Oceanic and Atmospheric Administration, Earth System Research Laboratory</td>
</tr>
<tr>
<td>Baer, Paul</td>
<td>Stanford University, Center for Environmental Science and Policy</td>
</tr>
<tr>
<td>Baker, Marcia</td>
<td>University of Washington</td>
</tr>
<tr>
<td>Barry, Roger</td>
<td>National Snow and Ice Data Center, University of Colorado</td>
</tr>
<tr>
<td>Bates, Timothy</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>Baughcum, Steven</td>
<td>Boeing Company</td>
</tr>
<tr>
<td>Bentley, Charles R.</td>
<td>University of Wisconsin, Madison</td>
</tr>
<tr>
<td>Bond, Tami</td>
<td>University of Illinois at Urbana-Champaign</td>
</tr>
<tr>
<td>Broccoli, Anthony J.</td>
<td>Rutgers University</td>
</tr>
<tr>
<td>Bromwich, David</td>
<td>Byrd Polar Research Center, The Ohio State University</td>
</tr>
<tr>
<td>Brooks, Harold</td>
<td>National Oceanic and Atmospheric Administration, National Severe Storms Laboratory</td>
</tr>
<tr>
<td>Bryan, Frank</td>
<td>National Center for Atmospheric Research</td>
</tr>
<tr>
<td>Cameron-Smith, Philip</td>
<td>Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>Chin, Mian</td>
<td>National Aeronautics and Space Administration, Goddard Space Flight Center</td>
</tr>
<tr>
<td>Christy, John</td>
<td>University of Alabama in Huntsville</td>
</tr>
<tr>
<td>Clemens, Steven</td>
<td>Brown University</td>
</tr>
<tr>
<td>Coffey, Michael</td>
<td>National Center for Atmospheric Research</td>
</tr>
</tbody>
</table>
COLLINS, William D.
Climate and Global Dynamics Division, National Center for Atmospheric Research

CROWLEY, Thomas
Duke University

CUNNOLD, Derek
School of Earth and Atmospheric Sciences, Georgia Institute of Technology

DAI, Aiguo
National Center for Atmospheric Research

DANIEL, John S.
National Oceanic and Atmospheric Administration, Earth System Research Laboratory

DANILIN, Mikhail
The Boeing Company

D’ARRIGO, Rosanne
Lamont Doherty Earth Observatory

DAVIES, Roger
Jet Propulsion Laboratory, California Institute of Technology

DEL GENIO, Anthony
National Aeronautics and Space Administration, Goddard Institute for Space Studies

DIAZ, Henry
National Oceanic and Atmospheric Administration, Climate Diagnostics Branch, Physical Science Division, Earth System Research Laboratory

DICKINSON, Robert E.
School of Earth and Atmospheric Sciences, Georgia Institute of Technology

DIXON, Keith
National Oceanic and Atmospheric Administration

DONNER, Leo
Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration

DOUGLAS, Bruce
International Hurricane Research Center

DOUGLASS, Anne
National Aeronautics and Space Administration, Goddard Space Flight Center

DUTTON, Ellsworth
National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division

EASTERLING, David
National Oceanic and Atmospheric Administration, Earth System Research Laboratory

EMANUEL, Kerry A.
Massachusetts Institute of Technology

EVANS, Wayne F.J.
North West Research Associates

FAHEY, David W.
National Oceanic and Atmospheric Administration, Earth System Research Laboratory

FEELY, Richard
National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory

FEINGOLD, Graham
National Oceanic and Atmospheric Administration

FELDMAN, Howard
American Petroleum Institute

FEYNMAN, Joan
Jet Propulsion Laboratory, California Institute of Technology

FITZPATRICK, Melanie
University of Washington

FOGT, Ryan
Polar Meteorology Group, Byrd Polar Research Center and Atmospheric Sciences Program, Department of Geography, The Ohio State University

FREE, Melissa
Air Resources Laboratory, National Oceanic and Atmospheric Administration

FU, Qiang
Department of Atmospheric Sciences, University of Washington

GALLO, Kevin
National Oceanic and Atmospheric Administration, NESDIS

GARCIA, Hernan
National Oceanic and Atmospheric Administration, National Oceanographic Data Center

GASSÓ, Santiago
University of Maryland, Baltimore County and NASA

GENT, Peter
National Center for Atmospheric Research

GERHARD, Lee C.
Thomsson Partner Associates

GHAN, Steven
Pacific Northwest National Laboratory

GNANADESIKAN, Anand
National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory

GORNITZ, Vivien
National Aeronautics and Space Administration, Goddard Institute for Space Studies, Columbia University

GROISMAN, Pavel
University Corporation for Atmospheric Research at the National Climatic Data Center, National Oceanic and Atmospheric Administration

GRUBER, Nicolas
Institute of Geophysics and Planetary Physics, University of California, Los Angeles and Department of Environmental Sciences, ETH Zurich

GURWICK, Noel
Carnegie Institution of Washington, Department of Global Ecology

HAKKARINEN, Chuck
Electric Power Research Institute, retired

HALLEGATTE, Stéphane
Centre International de Recherche sur l’Environnement et le Développement, École Nationale des Ponts-et-Chaussées and Centre National de Recherches Meteorologique, Meteo-France

HALLETT, John
Desert Research Institute

HAMILL, Patrick
San Jose State University

HARTMANN, Dennis
University of Washington

HAYHOE, Katharine
Texas Tech University

HEGERL, Gabriele
Division of Earth and Ocean Sciences, Nicholas School for the Environment and Earth Sciences, Duke University

HELD, Isaac
National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory

HEMING, Sidney
Lamont Doherty Earth Observatory, Columbia University

HOULTON, Benjamin
Stanford University, Dept. of Biological Sciences; Carnegie Institution of Washington, Dept. of Global Ecology

HU, Aixue
National Center for Atmospheric Research

HUGHES, Dan
Hughes and Associates

ICHOKU, Charles
Science Systems & Applications, Inc. (SSAI), NASA-GSFC

JACOB, Daniel
Department of Earth and Planetary Sciences, Harvard University

JACOBSON, Mark
Stanford University

JIN, Menglin
Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park

JOYCE, Terrence
Woods Hole Oceanographic Institution
Annex III

KARL, Thomas R.
National Oceanic and Atmospheric Administration, National Climatic Data Center

KAROLY, David J.
University of Oklahoma

KAUFMANN, Yoram
National Aeronautics and Space Administration, Goddard Space Flight Center

KELLER, Klaus
Pennsylvania State University

KHESHGI, Haroon
ExxonMobil Research and Engineering Company

KNUTSON, Thomas
Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration

KO, Malcolm
National Aeronautics and Space Administration, Langley Research Center

KOUTNIK, Michelle
University of Washington

KUETER, Jeffrey
Marshall Institute

LACIS, Andrew
National Aeronautics and Space Administration, Goddard Institute for Space Studies

LASZLO, Istvan
National Oceanic and Atmospheric Administration

LEULIETTE, Eric
University of Colorado, Boulder

LEY, Robert
Science Systems & Applications, Inc. (SSAI), NASA-GSFC

LEWITT, Martin
University of Washington

LI, Zhang Ning
University of Maryland, Department of Atmospheric and Oceanic Science and ESSIC

LIU, Yang Gang
Brookhaven National Laboratory

LOVEJOY, Edward R.
National Oceanic and Atmospheric Administration

LUNCH, Claire
Stanford University, Carnegie Institution of Washington

LUPO, Anthony
University of Missouri, Columbia

MACCRACKEN, Michael
Climate Institute

MAGI, Brian
University of Washington

MAHLMAN, Jerry
National Center for Atmospheric Research

MAHOWALD, Natalie
National Center for Atmospheric Research

MANN, Michael
Pennsylvania State University

MANNING, Martin
IPCC WGI TSU, National Oceanic and Atmospheric Administration, Earth System Research Laboratory

MARQUIS, Melinda
IPCC WGI TSU, National Oceanic and Atmospheric Administration, Earth System Research Laboratory

MARTIN, Scot
Harvard University

MASSIE, Steven
National Center for Atmospheric Research

MASTRANDREA, Michael
Stanford University

MATSUMOTO, Katsumi
University of Minnesota, Twin Cities

MATSUOKA, Kenichi
University of Washington

MAURICE, Lourdes
Federal Aviation Administration

MICHAELS, Patrick
University of Virginia

MILLER, Charles
Jet Propulsion Laboratory, California Institute of Technology

MILLER, Laury
National Oceanic and Atmospheric Administration, Lab for Satellite Altimetry

MILLER, Ron
National Aeronautics and Space Administration, Goddard Institute for Space Studies

MILLET, Dylan
Harvard University

MILLY, Chris
United States Geological Survey

MINNIS, Patrick
National Aeronautics and Space Administration, Langley Research Center

MOLINARI, Robert
National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory

MOTE, Philip
Climate Impacts Group, Joint Institute for the Study of the Atmosphere and Oceans (JIASO), University of Washington

MURPHY, Daniel
National Oceanic and Atmospheric Administration, Earth System Research Laboratory

MUSCHELER, Raimund
Goddard Earth Sciences and Technology Center, University of Maryland & NASA/Goddard Space Flight Center, Climate & Radiation Branch

NEELIN, J. David
University of California, Los Angeles

NELSON, Frederick
Department of Geography, University of Delaware

NEREM, R. Steven
University of Colorado at Boulder

NOLIN, Anne
Oregon State University

NORRIS, Joel
Scripps Institution of Oceanography

OPPENHEIMER, Michael
Princeton University

OTTO-BLIESNER, Bette
Climate and Global Dynamics Division, National Center for Atmospheric Research

OVERPECK, Jonathan
Institute for the Study of Planet Earth, University of Arizona

OWENS, John
3M

PATT, Anthony
Boston University

PENNER, Joyce E.
Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan

PETERS, Halton
Carnegie Institution of Washington, Department of Global Ecology

PRINN, Ronald
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology

PROFETA, Timothy H.
Nicholas Institute of Environmental Policy Solutions, D e University

RAMANATHAN, Veerabhadran
Scripps Institution of Oceanography

RAMASWAMY, Venkatachalam
National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory

RANDERSON, James
University of California, Irvine

RAVISHANKARA, A. R.
National Oceanic and Atmospheric Administration

RIGNOT, Eric
Jet Propulsion Laboratory
Annex III

RIND, David
National Aeronautics and Space Administration, Goddard Institute for Space Studies

RITSON, David
Stanford University

ROBOCK, Alan
Rutgers University

RUSSO, Felicita
UMBC/JCET

SABINE, Christopher
National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory

SCHIMEL, David
National Center for Atmospheric Research

SCHMIDT, Gavin
National Aeronautics and Space Administration, Goddard Institute for Space Studies

SCHWARTZ, Stephen E.
Brookhaven National Laboratory

SCHWING, Franklin
National Oceanic and Atmospheric Administration Fisheries Service, SWFSC/ERD

SEIDEI, Dian
National Oceanic and Atmospheric Administration, Air Resources Laboratory

SEINFELD, John
California Institute of Technology

SETHI, Anji
University of Connecticut, Department of Geography

SEVERINGHAUS, Jeffrey
Scripps Institution of Oceanography, University of California, San Diego

SHERWOOD, Steven
Yale University

SHINDELL, Drew
National Aeronautics and Space Administration, Goddard Institute for Space Studies

SHUKLA, Jagadish
Center for Ocean-Land-Atmosphere Studies, George Mason University

SIEVERING, Herman
University of Colorado - Boulder and Denver

SODEN, Brian
University of Miami, Rosenstiel School for Marine and Atmospheric Science

SOLOMON, Susan
Co-Chair, IPCC WGI, National Oceanic and Atmospheric Administration, Earth System Research Laboratory

SOULEN, Richard

STEFFAN, Konrad
University of Colorado

STEIG, Eric
University of Washington

STEVENS, Bjorn
UCLA Department of Atmospheric & Oceanic Sciences

STONE, Peter
Massachusetts Institute of Technology

STOUFFER, Ronald J.
National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory

TAKLE, Eugene
Iowa State University

TAMISIEA, Mark
Harvard-Smithsonian Center for Astrophysics

TERRY, Joyce
Woods Hole Oceanographic Institution

THOMPSON, Anne
Pennsylvania State University, Department of Meteorology

THOMPSON, David
Department of Atmospheric Science, Colorado State University

THOMPSON, LuAnne
University of Washington

THOMPSON, Robert
United States Geological Survey

TRENBERTH, Kevin E.
Climate Analysis Section, National Center for Atmospheric Research

VINNIKOV, Konstantin
University of Maryland

VONDER HAAR, Thomas
Colorado State University

WAITE, Ian
Massachusetts Institute of Technology

WANG, James S.
Environmental Defense

WEBB, Robert
National Oceanic and Atmospheric Administration, Earth System Research Laboratory

WEISS, Ray
Scripps Institution of Oceanography, University of California, San Diego

WELTON, Ellsworth
National Aeronautics and Space Administration, Goddard Space Flight Center

WIELICKI, Bruce
National Aeronautics and Space Administration, Langley Research Center

WOODHOUSE, Connie
National Climatic Data Center

YU, Hongbin
National Aeronautics and Space Administration, Goddard Space Flight Center

YU, Jin-Yi
University of California, Irvine

ZEMBER, Charles
University of California, Irvine

ZHAO, Xuepeng
ESSIC/UMCP & National Oceanic and Atmospheric Administration

International Organizations

PALMER, Timothy
European Centre for Medium-Range Weather Forecasting

RIXEN, Michel
University of Liege and NATO Undersea Research Center

SIMMONS, Adrian
European Centre for Medium-Range Weather Forecasts
Annex IV

Acronyms & Regional Abbreviations

Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µmol</td>
<td>micromole</td>
</tr>
<tr>
<td>20C3M</td>
<td>20th Century Climate in Coupled Models</td>
</tr>
<tr>
<td>AABW</td>
<td>Antarctic Bottom Water</td>
</tr>
<tr>
<td>AAIW</td>
<td>Antarctic Intermediate Water</td>
</tr>
<tr>
<td>AAO</td>
<td>Antarctic Oscillation</td>
</tr>
<tr>
<td>AATS</td>
<td>Advanced Along Track Scanning Radiometer</td>
</tr>
<tr>
<td>ACC</td>
<td>Antarctic Circumpolar Current</td>
</tr>
<tr>
<td>ACCENT</td>
<td>Atmospheric Composition Change: a European Network</td>
</tr>
<tr>
<td>ACE</td>
<td>Accumulated Cyclone Energy or Aerosol Characterization Experiment</td>
</tr>
<tr>
<td>ACRIM</td>
<td>Active Cavity Radiometer Irradiance Monitor</td>
</tr>
<tr>
<td>ACRIMSAT</td>
<td>Active Cavity Radiometer Irradiance Monitor Satellite</td>
</tr>
<tr>
<td>ACW</td>
<td>Antarctic circumpolar wave</td>
</tr>
<tr>
<td>ADEC</td>
<td>Aeolian Dust Experiment on Climate</td>
</tr>
<tr>
<td>ADNET</td>
<td>Asian Dust Network</td>
</tr>
<tr>
<td>AeroCom</td>
<td>Aerosol Model Intercomparison</td>
</tr>
<tr>
<td>AERONET</td>
<td>Aerosol RObotic NETwork</td>
</tr>
<tr>
<td>AGAGE</td>
<td>Advanced Global Atmospheric Gases Experiment</td>
</tr>
<tr>
<td>AGCM</td>
<td>Atmospheric General Circulation Model</td>
</tr>
<tr>
<td>AGWP</td>
<td>Absolute Global Warming Potential</td>
</tr>
<tr>
<td>AIACC</td>
<td>Assessments of Impacts and Adapations to Climate Change in Multiple Regions and Sectors</td>
</tr>
<tr>
<td>AIC</td>
<td>aviation-induced cloudiness</td>
</tr>
<tr>
<td>ALAS</td>
<td>Autonomous LAgrangian Current Explorer</td>
</tr>
<tr>
<td>ALE</td>
<td>Atmospheric Lifetime Experiment</td>
</tr>
<tr>
<td>AMIP</td>
<td>Atmospheric Model Intercomparison Project</td>
</tr>
<tr>
<td>AMO</td>
<td>Atlantic Multi-decadal Oscillation</td>
</tr>
<tr>
<td>AMSU</td>
<td>Advanced Microwave Sounding Unit</td>
</tr>
<tr>
<td>AO</td>
<td>Arctic Oscillation</td>
</tr>
<tr>
<td>AOGCM</td>
<td>Atmosphere-Ocean General Circulation Model</td>
</tr>
<tr>
<td>APEX</td>
<td>Atmospheric Particulate Environment Change Studies</td>
</tr>
<tr>
<td>AR4</td>
<td>Fourth Assessment Report</td>
</tr>
<tr>
<td>ARM</td>
<td>Atmospheric Radiation Measurement</td>
</tr>
<tr>
<td>ASOS</td>
<td>Automated Surface Observation Systems</td>
</tr>
<tr>
<td>ASTEX</td>
<td>Atlantic Stratosphere Transition Experiment</td>
</tr>
<tr>
<td>ATCM</td>
<td>Atmospheric Transport and Chemical Model</td>
</tr>
<tr>
<td>ATSR</td>
<td>Along Track Scanning Radiometer</td>
</tr>
<tr>
<td>AVHRR</td>
<td>Advanced Very High Resolution Radiometer</td>
</tr>
<tr>
<td>BATS</td>
<td>Bermuda Atlantic Time-series Study</td>
</tr>
<tr>
<td>BC</td>
<td>black carbon</td>
</tr>
<tr>
<td>BCC</td>
<td>Beijing Climate Center</td>
</tr>
<tr>
<td>BCCR</td>
<td>Bjerka Centre for Climate Research</td>
</tr>
<tr>
<td>BIOME 6000</td>
<td>Global Palaeovegetation Mapping project</td>
</tr>
<tr>
<td>BMRC</td>
<td>Bureau of Meteorology Research Centre</td>
</tr>
<tr>
<td>C*</td>
<td>Coupled Carbon Cycle Climate Model Intercomparison Project</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>calcium carbonate</td>
</tr>
<tr>
<td>CAMS</td>
<td>Climate Anomaly Monitoring System (NOAA)</td>
</tr>
<tr>
<td>CAPE</td>
<td>Convective Available Potential Energy</td>
</tr>
<tr>
<td>CCl₃</td>
<td>carbon tetrachloride</td>
</tr>
<tr>
<td>CCM</td>
<td>Chemistry-Climate Model</td>
</tr>
<tr>
<td>CCCma</td>
<td>Canadian Centre for Climate Modelling and Analysis</td>
</tr>
<tr>
<td>CCN</td>
<td>cloud condensation nuclei</td>
</tr>
<tr>
<td>CCSR</td>
<td>Centre for Climate System Research</td>
</tr>
<tr>
<td>CDIAC</td>
<td>Carbon Dioxide Information Analysis Center</td>
</tr>
<tr>
<td>CDW</td>
<td>Circumpolar Deep Water</td>
</tr>
<tr>
<td>CERES</td>
<td>Clouds and the Earth’s Radiant Energy System</td>
</tr>
<tr>
<td>CERFACS</td>
<td>Centre Europeen de Recherche et de Formation Avancee en Calcul Scientifique</td>
</tr>
<tr>
<td>CF₄</td>
<td>perfluoromethane</td>
</tr>
<tr>
<td>CFC</td>
<td>chlorofluorocarbon</td>
</tr>
<tr>
<td>CFCI₃</td>
<td>CFC-11</td>
</tr>
<tr>
<td>CH₂I₂</td>
<td>di-iodomethane (methylene iodide)</td>
</tr>
<tr>
<td>CH₂O</td>
<td>formaldehyde</td>
</tr>
<tr>
<td>CH₃CCl₃</td>
<td>methyl chloroform</td>
</tr>
<tr>
<td>CH₃COOH</td>
<td>acetic acid</td>
</tr>
<tr>
<td>CH₄</td>
<td>methane</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CLAMS</td>
<td>Chesapeake Lighthouse and Aircraft Measurements for Satellites</td>
</tr>
<tr>
<td>CLARIS</td>
<td>Europe-South America Network for Climate Change Assessment and Impact Studies</td>
</tr>
<tr>
<td>CLIMAP</td>
<td>Climate: Long-range Investigation, Mapping, and Prediction</td>
</tr>
<tr>
<td>CLIVAR</td>
<td>Climate Variability and Predictability Programme</td>
</tr>
<tr>
<td>CMAP</td>
<td>CPC Merged Analysis of Precipitation</td>
</tr>
<tr>
<td>CMDL</td>
<td>Climate Monitoring and Diagnostics Laboratory (NOAA)</td>
</tr>
<tr>
<td>CMIP</td>
<td>Coupled Model Intercomparison Project</td>
</tr>
<tr>
<td>CNRM</td>
<td>Centre National de Recherches Météorologiques</td>
</tr>
<tr>
<td>CO</td>
<td>carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CO₃⁻</td>
<td>carbonate</td>
</tr>
<tr>
<td>COADS</td>
<td>Comprehensive Ocean-Atmosphere Data Set</td>
</tr>
<tr>
<td>COARE</td>
<td>Coupled Ocean-Atmosphere Response Experiment</td>
</tr>
<tr>
<td>COBE-SST</td>
<td>Centennial in-situ Observation-Based Estimates of SSTs</td>
</tr>
<tr>
<td>COWL</td>
<td>Cold Ocean-Warm Land</td>
</tr>
<tr>
<td>CPC</td>
<td>Climate Prediction Center (NOAA)</td>
</tr>
<tr>
<td>CRIEPI</td>
<td>Central Research Institute of Electric Power Industry</td>
</tr>
<tr>
<td>CRUTEM2v</td>
<td>CRU/Hadley Centre gridded land-surface air temperature version 2v</td>
</tr>
<tr>
<td>CRUTEM3</td>
<td>CRU/Hadley Centre gridded land-surface air temperature version 3</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organization</td>
</tr>
<tr>
<td>CTM</td>
<td>Chemical Transport Model</td>
</tr>
<tr>
<td>DEMETER</td>
<td>Development of a European Multimodel Ensemble System for Seasonal to Interannual Prediction</td>
</tr>
<tr>
<td>DIC</td>
<td>dissolved inorganic carbon</td>
</tr>
<tr>
<td>DJF</td>
<td>December, January, February</td>
</tr>
<tr>
<td>DLR</td>
<td>Deutsches Zentrum für Luft- und Raumfahrt</td>
</tr>
<tr>
<td>DMS</td>
<td>dimethyl sulphide</td>
</tr>
<tr>
<td>D-O</td>
<td>Dansgaard-Oeschger</td>
</tr>
<tr>
<td>DOC</td>
<td>dissolved organic carbon</td>
</tr>
<tr>
<td>DORIS</td>
<td>Determination d’Orbite et Radiopositionnement Intégrés par Satellite</td>
</tr>
<tr>
<td>DSOW</td>
<td>Denmark Strait Overflow Water</td>
</tr>
<tr>
<td>DSP</td>
<td>Dynamical Seasonal Prediction</td>
</tr>
<tr>
<td>DTR</td>
<td>diurnal temperature range</td>
</tr>
<tr>
<td>DU</td>
<td>Dobson unit</td>
</tr>
<tr>
<td>EARLINET</td>
<td>European Aerosol Research Lidar Network</td>
</tr>
<tr>
<td>EBM</td>
<td>Energy Balance Model</td>
</tr>
<tr>
<td>ECMWF</td>
<td>European Centre for Medium Range Weather Forecasts</td>
</tr>
<tr>
<td>ECS</td>
<td>equilibrium climate sensitivity</td>
</tr>
<tr>
<td>EDGAR</td>
<td>Emission Database for Global Atmospheric Research</td>
</tr>
<tr>
<td>EMIC</td>
<td>Earth System Model of Intermediate Complexity</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño-Southern Oscillation</td>
</tr>
<tr>
<td>EOF</td>
<td>Empirical Orthogonal Function</td>
</tr>
<tr>
<td>EOS</td>
<td>Earth Observing System</td>
</tr>
<tr>
<td>EPICA</td>
<td>European Programme for Ice Coring in Antarctica</td>
</tr>
<tr>
<td>ERA-15</td>
<td>ECMWF 15-year reanalysis</td>
</tr>
<tr>
<td>ERA-40</td>
<td>ECMWF 40-year reanalysis</td>
</tr>
<tr>
<td>ERBE</td>
<td>Earth Radiation Budget Experiment</td>
</tr>
<tr>
<td>ERBS</td>
<td>Earth Radiation Budget Satellite</td>
</tr>
<tr>
<td>ERS</td>
<td>European Remote Sensing satellite</td>
</tr>
<tr>
<td>ESRL</td>
<td>Earth System Research Library (NOAA)</td>
</tr>
<tr>
<td>ESTOC</td>
<td>European Station for Time-series in the Ocean</td>
</tr>
<tr>
<td>EUROCS</td>
<td>EUROpean Cloud Systems</td>
</tr>
<tr>
<td>FACE</td>
<td>Free Air CO₂ Enrichment</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization (UN)</td>
</tr>
<tr>
<td>FAR</td>
<td>First Assessment Report</td>
</tr>
<tr>
<td>FRGC</td>
<td>Frontier Research Center for Global Change</td>
</tr>
<tr>
<td>FRSGC</td>
<td>Frontier Research System for Global Change</td>
</tr>
<tr>
<td>GAGE</td>
<td>Global Atmospheric Gases Experiment</td>
</tr>
<tr>
<td>GARP</td>
<td>Global Atmospheric Research Program</td>
</tr>
<tr>
<td>GATE</td>
<td>GARP Atlantic Tropical Experiment</td>
</tr>
<tr>
<td>GAW</td>
<td>Global Atmosphere Watch</td>
</tr>
<tr>
<td>GCM</td>
<td>General Circulation Model</td>
</tr>
<tr>
<td>GCOS</td>
<td>Global Climate Observing System</td>
</tr>
<tr>
<td>GCSS</td>
<td>GEWEX Cloud System Study</td>
</tr>
<tr>
<td>GEIA</td>
<td>Global Emissions Inventory Activity</td>
</tr>
<tr>
<td>GEOS</td>
<td>Goddard Earth Observing System</td>
</tr>
<tr>
<td>GEWEX</td>
<td>Global Energy and Water Cycle Experiment</td>
</tr>
<tr>
<td>GFSL</td>
<td>Geophysical Fluid Dynamics Laboratory</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>GHCN</td>
<td>Global Historical Climatology Network</td>
</tr>
<tr>
<td>GHG</td>
<td>greenhouse gas</td>
</tr>
<tr>
<td>GIA</td>
<td>glacial isostatic adjustment</td>
</tr>
<tr>
<td>GIN Sea</td>
<td>Greenland-Iceland-Norwegian Sea</td>
</tr>
<tr>
<td>GISP2</td>
<td>Greenland Ice Sheet Project 2</td>
</tr>
<tr>
<td>GISS</td>
<td>Goddard Institute for Space Studies</td>
</tr>
<tr>
<td>GLACE</td>
<td>Global Land Atmosphere Coupling Experiment</td>
</tr>
<tr>
<td>GLAMAP</td>
<td>Glacial Ocean Mapping</td>
</tr>
<tr>
<td>GLAS</td>
<td>Geoscience Laser Altimeter System</td>
</tr>
<tr>
<td>GLODAP</td>
<td>Global Ocean Data Analysis Project</td>
</tr>
<tr>
<td>GLOSS</td>
<td>Global Sea Level Observing System</td>
</tr>
<tr>
<td>GMD</td>
<td>Global Monitoring Division (NOAA)</td>
</tr>
<tr>
<td>GOME</td>
<td>Global Ozone Monitoring Experiment</td>
</tr>
<tr>
<td>GPCC</td>
<td>Global Precipitation Climatology Centre</td>
</tr>
<tr>
<td>GPCP</td>
<td>Global Precipitation Climatology Project</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GRACE</td>
<td>Gravity Recovery and Climate Experiment</td>
</tr>
<tr>
<td>GRIP</td>
<td>Greenland Ice Core Project</td>
</tr>
<tr>
<td>GSA</td>
<td>Great Salinity Anomaly</td>
</tr>
<tr>
<td>Gt</td>
<td>gigatonne (10^9 tonnes)</td>
</tr>
<tr>
<td>GWE</td>
<td>Global Weather Experiment</td>
</tr>
<tr>
<td>GWP</td>
<td>Global Warming Potential</td>
</tr>
<tr>
<td>H</td>
<td>molecular hydrogen</td>
</tr>
<tr>
<td>H_2</td>
<td>molecular hydrogen</td>
</tr>
<tr>
<td>HadAT</td>
<td>Hadley Centre Atmospheric Temperature data set</td>
</tr>
<tr>
<td>HadAT2</td>
<td>Hadley Centre Atmospheric Temperature data set Version 2</td>
</tr>
<tr>
<td>HadCRUT2v</td>
<td>Hadley Centre/CRU gridded surface temperature data set version 2v</td>
</tr>
<tr>
<td>HadCRUT3</td>
<td>Hadley Centre/CRU gridded surface temperature data set version 3</td>
</tr>
<tr>
<td>HadISST</td>
<td>Hadley Centre Sea Ice and Sea Surface Temperature data set</td>
</tr>
<tr>
<td>HadMAT</td>
<td>Hadley Centre Marine Air Temperature data set</td>
</tr>
<tr>
<td>HadRT</td>
<td>Hadley Centre Radiosonde Temperature data set</td>
</tr>
<tr>
<td>HadRT2</td>
<td>Hadley Centre Radiosonde Temperature data set Version 2</td>
</tr>
<tr>
<td>HadSLP2</td>
<td>Hadley Centre MSLP data set version 2</td>
</tr>
<tr>
<td>HadSST2</td>
<td>Hadley Centre SST data set version 2</td>
</tr>
<tr>
<td>HALOE</td>
<td>Halogen Occultation Experiment</td>
</tr>
<tr>
<td>HCFC</td>
<td>hydrochlorofluorocarbon</td>
</tr>
<tr>
<td>HCO_3^-</td>
<td>bicarbonate</td>
</tr>
<tr>
<td>HFC</td>
<td>hydrofluorocarbon</td>
</tr>
<tr>
<td>HIRS</td>
<td>High Resolution Infrared Radiation Sounder</td>
</tr>
<tr>
<td>HLM</td>
<td>High Latitude Mode</td>
</tr>
<tr>
<td>HNO_3</td>
<td>nitric acid</td>
</tr>
<tr>
<td>HO_2</td>
<td>hydroperoxyl radical</td>
</tr>
<tr>
<td>HONO</td>
<td>nitrous acid</td>
</tr>
<tr>
<td>HOT</td>
<td>Hawaii Ocean Time-Series</td>
</tr>
<tr>
<td>hPa</td>
<td>hectopascal</td>
</tr>
<tr>
<td>HYDE</td>
<td>HistorY Database of the Environment</td>
</tr>
<tr>
<td>IABP</td>
<td>International Arctic Buoy Programme</td>
</tr>
<tr>
<td>ICESat</td>
<td>Ice, Cloud and land Elevation Satellite</td>
</tr>
<tr>
<td>ICODAS</td>
<td>International Comprehensive Ocean-Atmosphere Data Set</td>
</tr>
<tr>
<td>ICSTM</td>
<td>Imperial College of Science, Technology and Medicine</td>
</tr>
<tr>
<td>IGBP</td>
<td>International Geosphere-Biosphere Programme</td>
</tr>
<tr>
<td>IGBP-DIS</td>
<td>IGBP Data and Information System</td>
</tr>
<tr>
<td>IGRA</td>
<td>Integrated Global Radiosonde Archive</td>
</tr>
<tr>
<td>IMO</td>
<td>International Meteorological Organization</td>
</tr>
<tr>
<td>INDOEX</td>
<td>Indian Ocean Experiment</td>
</tr>
<tr>
<td>InSAR</td>
<td>Interferometric Synthetic Aperture Radar</td>
</tr>
<tr>
<td>IO</td>
<td>iodine monoxide</td>
</tr>
<tr>
<td>IOCI</td>
<td>Indian Ocean Climate Initiative</td>
</tr>
<tr>
<td>IOD</td>
<td>Indian Ocean Dipole</td>
</tr>
<tr>
<td>IOZM</td>
<td>Indian Ocean Zonal Mode</td>
</tr>
<tr>
<td>IPAB</td>
<td>International Programme for Antarctic Buoys</td>
</tr>
<tr>
<td>IPO</td>
<td>Inter-decadal Pacific Oscillation</td>
</tr>
<tr>
<td>IPSL</td>
<td>Institut Pierre Simon Laplace</td>
</tr>
<tr>
<td>IS92</td>
<td>IPCC Scenarios 1992</td>
</tr>
<tr>
<td>ISCCP</td>
<td>International Satellite Cloud Climatology Project</td>
</tr>
<tr>
<td>ITCZ</td>
<td>Inter-Tropical Convergence Zone</td>
</tr>
<tr>
<td>JAMSTEC</td>
<td>Japan Marine Science and Technology Center</td>
</tr>
<tr>
<td>JJA</td>
<td>June, July, August</td>
</tr>
<tr>
<td>JMA</td>
<td>Japan Meteorological Agency</td>
</tr>
<tr>
<td>ka</td>
<td>thousand years ago</td>
</tr>
<tr>
<td>KMA</td>
<td>Korea Meteorological Administration</td>
</tr>
<tr>
<td>KNMI</td>
<td>Royal Netherlands Meteorological Institute</td>
</tr>
<tr>
<td>kyr</td>
<td>thousand years</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>LASG</td>
<td>National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics</td>
</tr>
<tr>
<td>LBA</td>
<td>Large-Scale Biosphere-Atmosphere Experiment in Amazonia</td>
</tr>
<tr>
<td>LBC</td>
<td>lateral boundary condition</td>
</tr>
<tr>
<td>LBL</td>
<td>line-by-line</td>
</tr>
<tr>
<td>LGM</td>
<td>Last Glacial Maximum</td>
</tr>
<tr>
<td>LIG</td>
<td>Last Interglacial</td>
</tr>
<tr>
<td>LKS</td>
<td>Lanzante-Klein-Seidel</td>
</tr>
<tr>
<td>LLGHG</td>
<td>long-lived greenhouse gas</td>
</tr>
<tr>
<td>LLJ</td>
<td>Low-Level Jet</td>
</tr>
<tr>
<td>LLNL</td>
<td>Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>LMD</td>
<td>Laboratoire de Météorologie Dynamique</td>
</tr>
<tr>
<td>LOA</td>
<td>Laboratoire d’Optique Atmosphérique</td>
</tr>
<tr>
<td>LOSU</td>
<td>level of scientific understanding</td>
</tr>
<tr>
<td>LSCE</td>
<td>Laboratoire des Sciences du Climat et de l’Environnement</td>
</tr>
<tr>
<td>LSM</td>
<td>land surface model</td>
</tr>
<tr>
<td>LSW</td>
<td>Labrador Sea Water</td>
</tr>
<tr>
<td>LW</td>
<td>longwave</td>
</tr>
<tr>
<td>LWP</td>
<td>liquid water path</td>
</tr>
<tr>
<td>Ma</td>
<td>million years ago</td>
</tr>
<tr>
<td>MAM</td>
<td>March, April, May</td>
</tr>
<tr>
<td>MARGO</td>
<td>Multiproxy Approach for the Reconstruction of the Glacial Ocean surface</td>
</tr>
<tr>
<td>mb</td>
<td>millibar</td>
</tr>
<tr>
<td>MDI</td>
<td>Michelson Doppler Imager</td>
</tr>
<tr>
<td>Meteosat</td>
<td>European geostationary meteorological satellite</td>
</tr>
<tr>
<td>MFR</td>
<td>Maximum Feasible Reduction</td>
</tr>
<tr>
<td>MHT</td>
<td>meridional heat transport</td>
</tr>
<tr>
<td>MINOS</td>
<td>Mediterranean Intensive Oxidants Study</td>
</tr>
<tr>
<td>MIP</td>
<td>Model Intercomparison Project</td>
</tr>
<tr>
<td>MIRAGE</td>
<td>Megacity Impacts on Regional and Global Environments</td>
</tr>
<tr>
<td>MISO</td>
<td>Monsoon Intra-Seasonal Oscillation</td>
</tr>
<tr>
<td>MISR</td>
<td>Multi-angle Imaging Spectro-Radiometer</td>
</tr>
<tr>
<td>MJO</td>
<td>Madden-Julian Oscillation</td>
</tr>
<tr>
<td>MLS</td>
<td>Microwave Limb Sounder</td>
</tr>
<tr>
<td>MMD</td>
<td>Multi-Model Data set (at PCMDI)</td>
</tr>
<tr>
<td>MOC</td>
<td>Meridional Overturning Circulation</td>
</tr>
<tr>
<td>MODIS</td>
<td>Moderate Resolution Imaging Spectrometer</td>
</tr>
<tr>
<td>mol</td>
<td>mole</td>
</tr>
<tr>
<td>MONEX</td>
<td>Monsoon Experiment</td>
</tr>
<tr>
<td>MOPITT</td>
<td>Measurements of Pollution in the Troposphere</td>
</tr>
<tr>
<td>MOZAIC</td>
<td>Measurement of Ozone by Airbus In-service Aircraft</td>
</tr>
<tr>
<td>MPI</td>
<td>Max Planck Institute</td>
</tr>
<tr>
<td>MPIC</td>
<td>Max Planck Institute for Chemistry</td>
</tr>
<tr>
<td>MPLNET</td>
<td>Micro-Pulse Lidar Network</td>
</tr>
<tr>
<td>MRI</td>
<td>Meteorological Research Institute of JMA</td>
</tr>
<tr>
<td>MSLP</td>
<td>mean sea level pressure</td>
</tr>
<tr>
<td>MSU</td>
<td>Microwave Sounding Unit</td>
</tr>
<tr>
<td>Myr</td>
<td>million years</td>
</tr>
<tr>
<td>N2</td>
<td>molecular nitrogen</td>
</tr>
<tr>
<td>N2O</td>
<td>nitrous oxide</td>
</tr>
<tr>
<td>N2O5</td>
<td>dinitrogen pentoxide</td>
</tr>
<tr>
<td>NADW</td>
<td>North Atlantic Deep Water</td>
</tr>
<tr>
<td>NAH</td>
<td>North Atlantic subtropical high</td>
</tr>
<tr>
<td>NAM</td>
<td>Northern Annular Mode</td>
</tr>
<tr>
<td>NAMS</td>
<td>North American Monsoon System</td>
</tr>
<tr>
<td>NAO</td>
<td>North Atlantic Oscillation</td>
</tr>
<tr>
<td>NARCCAP</td>
<td>North American Regional Climate Change Assessment Program</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NCAR</td>
<td>National Center for Atmospheric Research</td>
</tr>
<tr>
<td>NCDC</td>
<td>National Climatic Data Center</td>
</tr>
<tr>
<td>NCEP</td>
<td>National Centers for Environmental Prediction</td>
</tr>
<tr>
<td>NEAQS</td>
<td>New England Air Quality Study</td>
</tr>
<tr>
<td>NEP</td>
<td>net ecosystem production</td>
</tr>
<tr>
<td>NESDIS</td>
<td>National Environmental Satellite, Data and Information Service</td>
</tr>
<tr>
<td>NGRIP</td>
<td>North Greenland Ice Core Project</td>
</tr>
<tr>
<td>NH</td>
<td>Northern Hemisphere</td>
</tr>
<tr>
<td>NH3</td>
<td>ammonia</td>
</tr>
<tr>
<td>NH4+</td>
<td>ammonium ion</td>
</tr>
<tr>
<td>NIES</td>
<td>National Institute for Environmental Studies</td>
</tr>
<tr>
<td>NIWA</td>
<td>National Institute of Water and Atmospheric Research</td>
</tr>
<tr>
<td>NMAT</td>
<td>Nighttime Marine Air Temperature</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>NMHC</td>
<td>non-methane hydrocarbon</td>
</tr>
<tr>
<td>NMVOC</td>
<td>non-methane volatile organic compound</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>NO₂</td>
<td>nitrogen dioxide</td>
</tr>
<tr>
<td>NO₃</td>
<td>nitrate radical</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NOₓ</td>
<td>reactive nitrogen oxides (the sum of NO and NO₂)</td>
</tr>
<tr>
<td>NPI</td>
<td>North Pacific Index</td>
</tr>
<tr>
<td>NPIW</td>
<td>North Pacific Intermediate Water</td>
</tr>
<tr>
<td>NPP</td>
<td>net primary productivity</td>
</tr>
<tr>
<td>NRA</td>
<td>NCEP/NCAR reanalysis</td>
</tr>
<tr>
<td>NVAP</td>
<td>NASA Water Vapor Project</td>
</tr>
<tr>
<td>O¹(0)</td>
<td>oxygen radical in the 1D excited state</td>
</tr>
<tr>
<td>O₂</td>
<td>molecular oxygen</td>
</tr>
<tr>
<td>O₃</td>
<td>ozone</td>
</tr>
<tr>
<td>OASIS</td>
<td>Ocean Atmosphere Sea Ice Soil</td>
</tr>
<tr>
<td>OCTS</td>
<td>Ocean Colour and Temperature Scanner</td>
</tr>
<tr>
<td>ODS</td>
<td>ozone-depleting substances</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>OGCM</td>
<td>Ocean General Circulation Model</td>
</tr>
<tr>
<td>OH</td>
<td>hydroxyl radical</td>
</tr>
<tr>
<td>OIO</td>
<td>iodine dioxide</td>
</tr>
<tr>
<td>OLR</td>
<td>outgoing longwave radiation</td>
</tr>
<tr>
<td>OMI</td>
<td>Ozone Monitoring Instrument</td>
</tr>
<tr>
<td>OPAC</td>
<td>Optical Parameters of Aerosols and Clouds</td>
</tr>
<tr>
<td>PCMDI</td>
<td>Program for Climate Model Diagnosis and Intercomparison</td>
</tr>
<tr>
<td>pCO₂</td>
<td>partial pressure of CO₂</td>
</tr>
<tr>
<td>PDF</td>
<td>probability density function</td>
</tr>
<tr>
<td>PDI</td>
<td>Power Dissipation Index</td>
</tr>
<tr>
<td>PDO</td>
<td>Pacific Decadal Oscillation</td>
</tr>
<tr>
<td>PDSI</td>
<td>Palmer Drought Severity Index</td>
</tr>
<tr>
<td>PET</td>
<td>potential evapotranspiration</td>
</tr>
<tr>
<td>PETM</td>
<td>Palaeocene-Eocene Thermal Maximum</td>
</tr>
<tr>
<td>PFC</td>
<td>perfluorocarbon</td>
</tr>
<tr>
<td>Pg</td>
<td>petagram (10¹⁵ grams)</td>
</tr>
<tr>
<td>PMIP</td>
<td>Paleoclimate Modelling Intercomparison Project</td>
</tr>
<tr>
<td>PMOD</td>
<td>Physikalisch-Meteorologisches Observatorium Davos</td>
</tr>
<tr>
<td>PNA</td>
<td>Pacific-North American pattern</td>
</tr>
<tr>
<td>PNNL</td>
<td>Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>PNV</td>
<td>potential natural vegetation</td>
</tr>
<tr>
<td>POA</td>
<td>primary organic aerosol</td>
</tr>
<tr>
<td>POC</td>
<td>particulate organic carbon</td>
</tr>
<tr>
<td>POLDER</td>
<td>Polarization and Directionality of the Earth’s Reflectance</td>
</tr>
<tr>
<td>POM</td>
<td>particulate organic matter</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PR</td>
<td>Precipitation Radar</td>
</tr>
<tr>
<td>PREC/L</td>
<td>Precipitation Reconstruction over Land (PREC/L)</td>
</tr>
<tr>
<td>PROVOST</td>
<td>Prediction of Climate Variations on Seasonal to Interannual Time Scales</td>
</tr>
<tr>
<td>PRP</td>
<td>Partial Radiative Perturbation</td>
</tr>
<tr>
<td>PSA</td>
<td>Pacific-South American pattern</td>
</tr>
<tr>
<td>PSC</td>
<td>polar stratospheric cloud</td>
</tr>
<tr>
<td>PSMSL</td>
<td>Permanent Service for Mean Sea Level</td>
</tr>
<tr>
<td>PSU</td>
<td>Pennsylvania State University</td>
</tr>
<tr>
<td>psu</td>
<td>Practical Salinity Unit</td>
</tr>
<tr>
<td>QBO</td>
<td>Quasi-Biennial Oscillation</td>
</tr>
<tr>
<td>RATPAC</td>
<td>Radiosonde Atmospheric Temperature Products for Assessing Climate</td>
</tr>
<tr>
<td>RCM</td>
<td>Regional Climate Model</td>
</tr>
<tr>
<td>REA</td>
<td>Reliability Ensemble Average</td>
</tr>
<tr>
<td>REML</td>
<td>restricted maximum likelihood</td>
</tr>
<tr>
<td>RF</td>
<td>radiative forcing</td>
</tr>
<tr>
<td>RFI</td>
<td>Radiative Forcing Index</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
<tr>
<td>RMS</td>
<td>root-mean square</td>
</tr>
<tr>
<td>RSL</td>
<td>relative sea level</td>
</tr>
<tr>
<td>RSS</td>
<td>Remote Sensing Systems</td>
</tr>
<tr>
<td>RTMIP</td>
<td>Radiative-Transfer Model Intercomparison Project</td>
</tr>
<tr>
<td>SACZ</td>
<td>South Atlantic Convergence Zone</td>
</tr>
<tr>
<td>SAFARI</td>
<td>Southern African Regional Science Initiative</td>
</tr>
<tr>
<td>SAGE</td>
<td>Stratospheric Aerosol and Gas Experiment or Centre for Sustainability and the Global Environment</td>
</tr>
<tr>
<td>SAM</td>
<td>Southern Annular Mode or Stratospheric Aerosol Measurement</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SAMS</td>
<td>South American Monsoon System</td>
</tr>
<tr>
<td>SAMW</td>
<td>Subantarctic Mode Water</td>
</tr>
<tr>
<td>SAR</td>
<td>Second Assessment Report or Synthetic Aperture Radar</td>
</tr>
<tr>
<td>SARB</td>
<td>Surface and Atmosphere Radiation Budget</td>
</tr>
<tr>
<td>SARR</td>
<td>Space Absolute Radiometric Reference</td>
</tr>
<tr>
<td>SAT</td>
<td>surface air temperature</td>
</tr>
<tr>
<td>SCA</td>
<td>snow-covered area</td>
</tr>
<tr>
<td>SCIAMACHY</td>
<td>SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY</td>
</tr>
<tr>
<td>SCM</td>
<td>Simple Climate Model</td>
</tr>
<tr>
<td>SeaWiFs</td>
<td>Sea-Viewing Wide Field-of-View Sensor</td>
</tr>
<tr>
<td>SF₆</td>
<td>sulphur hexafluoride</td>
</tr>
<tr>
<td>SH</td>
<td>Southern Hemisphere</td>
</tr>
<tr>
<td>SIO</td>
<td>Scripps Institution of Oceanography</td>
</tr>
<tr>
<td>SIS</td>
<td>Small Island States</td>
</tr>
<tr>
<td>SLE</td>
<td>sea level equivalent</td>
</tr>
<tr>
<td>SLP</td>
<td>sea level pressure</td>
</tr>
<tr>
<td>SMB</td>
<td>surface mass balance</td>
</tr>
<tr>
<td>SMM</td>
<td>Solar Maximum Mission</td>
</tr>
<tr>
<td>SMMR</td>
<td>Scanning Multichannel Microwave Radiometer</td>
</tr>
<tr>
<td>SO</td>
<td>Southern Oscillation</td>
</tr>
<tr>
<td>SO₂</td>
<td>sulphur dioxide</td>
</tr>
<tr>
<td>SO₄</td>
<td>sulphate</td>
</tr>
<tr>
<td>SOA</td>
<td>secondary organic aerosol</td>
</tr>
<tr>
<td>SOHO</td>
<td>Solar Heliospheric Observatory</td>
</tr>
<tr>
<td>SOI</td>
<td>Southern Oscillation Index</td>
</tr>
<tr>
<td>SOM</td>
<td>soil organic matter</td>
</tr>
<tr>
<td>SON</td>
<td>September, October, November</td>
</tr>
<tr>
<td>SORCE</td>
<td>Solar Radiation and Climate Experiment</td>
</tr>
<tr>
<td>SPARC</td>
<td>Stratospheric Processes and their Role in Climate</td>
</tr>
<tr>
<td>SPCZ</td>
<td>South Pacific Convergence Zone</td>
</tr>
<tr>
<td>SPM</td>
<td>Summary for Policymakers</td>
</tr>
<tr>
<td>SRALT</td>
<td>Satellite radar altimetry</td>
</tr>
<tr>
<td>SRES</td>
<td>Special Report on Emission Scenarios</td>
</tr>
<tr>
<td>SSM/I</td>
<td>Special Sensor Microwave/Imager</td>
</tr>
<tr>
<td>SST</td>
<td>sea surface temperature</td>
</tr>
<tr>
<td>STAREX</td>
<td>STAtistical and Regional dynamical Downscaling of EXtremes for European regions</td>
</tr>
<tr>
<td>STE</td>
<td>stratosphere-troposphere exchange</td>
</tr>
<tr>
<td>STMW</td>
<td>Subtropical Mode Water</td>
</tr>
<tr>
<td>SUNY</td>
<td>State University of New York</td>
</tr>
<tr>
<td>SV</td>
<td>Sverdrup (10⁶ m³ s⁻¹)</td>
</tr>
<tr>
<td>SW</td>
<td>shortwave</td>
</tr>
<tr>
<td>SWE</td>
<td>snow water equivalent</td>
</tr>
<tr>
<td>SWH</td>
<td>significant wave height</td>
</tr>
<tr>
<td>T/P</td>
<td>TOPEX/Poseidon</td>
</tr>
<tr>
<td>T12</td>
<td>HIRS channel 12</td>
</tr>
<tr>
<td>T2</td>
<td>MSU channel 2</td>
</tr>
<tr>
<td>T2₁L</td>
<td>MSU lower-troposphere channel</td>
</tr>
<tr>
<td>T3</td>
<td>MSU channel 3</td>
</tr>
<tr>
<td>T4</td>
<td>MSU channel 4</td>
</tr>
<tr>
<td>TAR</td>
<td>Third Assessment Report</td>
</tr>
<tr>
<td>TARFOX</td>
<td>Tropospheric Aerosol Radiative Forcing Experiment</td>
</tr>
<tr>
<td>TBO</td>
<td>Tropospheric Biennial Oscillation</td>
</tr>
<tr>
<td>TCR</td>
<td>transient climate response</td>
</tr>
<tr>
<td>TEAP</td>
<td>Technology and Economic Assessment Panel</td>
</tr>
<tr>
<td>TGBM</td>
<td>Tide Gauge Bench Mark</td>
</tr>
<tr>
<td>TGICA</td>
<td>Task Group on Data and Scenario Support for Impact and Climate Analysis (IPCC)</td>
</tr>
<tr>
<td>THC</td>
<td>Thermohaline Circulation</td>
</tr>
<tr>
<td>THIR</td>
<td>Temperature Humidity Infrared Radiometer</td>
</tr>
<tr>
<td>TIM</td>
<td>Total Solar Irradiance Monitor</td>
</tr>
<tr>
<td>TIROS</td>
<td>Television InfraRed Observation Satellite</td>
</tr>
<tr>
<td>TMI</td>
<td>TRMM microwave imager</td>
</tr>
<tr>
<td>TOA</td>
<td>top of the atmosphere</td>
</tr>
<tr>
<td>TOGA</td>
<td>Tropical Ocean Global Atmosphere</td>
</tr>
<tr>
<td>TOM</td>
<td>top of the model</td>
</tr>
<tr>
<td>TOMS</td>
<td>Total Ozone Mapping Spectrometer</td>
</tr>
<tr>
<td>TOPEX</td>
<td>TOPography Experiment</td>
</tr>
<tr>
<td>TOVS</td>
<td>TIROS Operational Vertical Sounder</td>
</tr>
<tr>
<td>TransCom 3</td>
<td>Atmospheric Tracer Transport Model Intercomparison Project</td>
</tr>
<tr>
<td>TRMM</td>
<td>Tropical Rainfall Measuring Mission</td>
</tr>
<tr>
<td>TSI</td>
<td>total solar irradiance</td>
</tr>
<tr>
<td>UAH</td>
<td>University of Alabama in Huntsville</td>
</tr>
</tbody>
</table>
Regional Abbreviations used in Chapter 11

<table>
<thead>
<tr>
<th>Code</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALA</td>
<td>Alaska</td>
<td></td>
</tr>
<tr>
<td>AMZ</td>
<td>Amazonia</td>
<td></td>
</tr>
<tr>
<td>ANT</td>
<td>Antarctic</td>
<td></td>
</tr>
<tr>
<td>ARC</td>
<td>Arctic</td>
<td></td>
</tr>
<tr>
<td>CAM</td>
<td>Central America</td>
<td></td>
</tr>
<tr>
<td>CAR</td>
<td>Caribbean</td>
<td></td>
</tr>
<tr>
<td>CAS</td>
<td>Central Asia</td>
<td></td>
</tr>
<tr>
<td>CGI</td>
<td>East Canada, Greenland and Iceland</td>
<td></td>
</tr>
<tr>
<td>CNA</td>
<td>Central North America</td>
<td></td>
</tr>
<tr>
<td>EAF</td>
<td>East Africa</td>
<td></td>
</tr>
<tr>
<td>EAS</td>
<td>East Asia</td>
<td></td>
</tr>
<tr>
<td>ENA</td>
<td>Eastern North America</td>
<td></td>
</tr>
<tr>
<td>IND</td>
<td>Indian Ocean</td>
<td></td>
</tr>
<tr>
<td>MED</td>
<td>Mediterranean Basin</td>
<td></td>
</tr>
<tr>
<td>NAS</td>
<td>Northern Asia</td>
<td></td>
</tr>
<tr>
<td>NAU</td>
<td>North Australia</td>
<td></td>
</tr>
<tr>
<td>NEU</td>
<td>Northern Europe</td>
<td></td>
</tr>
<tr>
<td>NPA</td>
<td>North Pacific Ocean</td>
<td></td>
</tr>
<tr>
<td>SAF</td>
<td>South Africa</td>
<td></td>
</tr>
<tr>
<td>SAH</td>
<td>Sahara</td>
<td></td>
</tr>
<tr>
<td>SAS</td>
<td>South Asia</td>
<td></td>
</tr>
<tr>
<td>SAU</td>
<td>South Australia</td>
<td></td>
</tr>
<tr>
<td>SEA</td>
<td>Southeast Asia</td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>Southern Europe and Mediterranean</td>
<td></td>
</tr>
<tr>
<td>SPA</td>
<td>South Pacific Ocean</td>
<td></td>
</tr>
<tr>
<td>SSA</td>
<td>Southern South America</td>
<td></td>
</tr>
<tr>
<td>TIB</td>
<td>Tibetan Plateau</td>
<td></td>
</tr>
<tr>
<td>TNE</td>
<td>Tropical Northeast Atlantic</td>
<td></td>
</tr>
<tr>
<td>WAF</td>
<td>West Africa</td>
<td></td>
</tr>
<tr>
<td>WNA</td>
<td>Western North America</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UARS</td>
<td>Upper Atmosphere Research Satellite</td>
<td></td>
</tr>
<tr>
<td>UCDW</td>
<td>Upper Circumpolar Deep Water</td>
<td></td>
</tr>
<tr>
<td>UCI</td>
<td>University of California at Irvine</td>
<td></td>
</tr>
<tr>
<td>UEA</td>
<td>University of East Anglia</td>
<td></td>
</tr>
<tr>
<td>UHI</td>
<td>Urban Heat Island</td>
<td></td>
</tr>
<tr>
<td>UIO</td>
<td>University of Oslo</td>
<td></td>
</tr>
<tr>
<td>UKMO</td>
<td>United Kingdom Meteorological Office</td>
<td></td>
</tr>
<tr>
<td>ULAQ</td>
<td>University of L’Aquila</td>
<td></td>
</tr>
<tr>
<td>UMD</td>
<td>University of Maryland</td>
<td></td>
</tr>
<tr>
<td>UMI</td>
<td>University of Michigan</td>
<td></td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
<td></td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
<td></td>
</tr>
<tr>
<td>USHCN</td>
<td>US Historical Climatology Network</td>
<td></td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time</td>
<td></td>
</tr>
<tr>
<td>UTRH</td>
<td>upper-tropospheric relative humidity</td>
<td></td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
<td></td>
</tr>
<tr>
<td>UVic</td>
<td>University of Victoria</td>
<td></td>
</tr>
<tr>
<td>VIRGO</td>
<td>Variability of Irradiance and Gravity Oscillations</td>
<td></td>
</tr>
<tr>
<td>VIRS</td>
<td>Visible Infrared Scanner</td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
<td></td>
</tr>
<tr>
<td>VOS</td>
<td>Voluntary Observing Ships</td>
<td></td>
</tr>
<tr>
<td>VRGCM</td>
<td>Variable-Resolution General Circulation Model</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>watt</td>
<td></td>
</tr>
<tr>
<td>WAIS</td>
<td>West Antarctic Ice Sheet</td>
<td></td>
</tr>
<tr>
<td>WCRP</td>
<td>World Climate Research Programme</td>
<td></td>
</tr>
<tr>
<td>WDCGG</td>
<td>World Data Centre for Greenhouse Gases</td>
<td></td>
</tr>
<tr>
<td>WGI</td>
<td>IPCC Working Group I</td>
<td></td>
</tr>
<tr>
<td>WGII</td>
<td>IPCC Working Group II</td>
<td></td>
</tr>
<tr>
<td>WGIll</td>
<td>IPCC Working Group III</td>
<td></td>
</tr>
<tr>
<td>WGMS</td>
<td>World Glacier Monitoring Service</td>
<td></td>
</tr>
<tr>
<td>WMDW</td>
<td>Western Mediterranean Deep Water</td>
<td></td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization</td>
<td></td>
</tr>
<tr>
<td>WOCE</td>
<td>World Ocean Circulation Experiment</td>
<td></td>
</tr>
<tr>
<td>WRE</td>
<td>Wigley, Richels and Edmonds (1996)</td>
<td></td>
</tr>
<tr>
<td>WWR</td>
<td>World Weather Records</td>
<td></td>
</tr>
<tr>
<td>ZIA</td>
<td>0°C isotherm altitude</td>
<td></td>
</tr>
<tr>
<td>(\tau _{aer})</td>
<td>aerosol optical depth</td>
<td></td>
</tr>
</tbody>
</table>