SPATIAL DISTRIBUTION OF MICROPARTICLES WITHIN ANTARCTIC SNOW-FALL*

by

Lonnie G. Thompson and Ellen Mosley-Thompson
(Institute of Polar Studies, Ohio State University, Columbus, Ohio 43210, U.S.A.)

ABSTRACT
The concentration and size distribution of water-insoluble microparticles were measured in 2,332 snow and firm samples from (a) sites on the Antarctic Peninsula, (b) the Byrd station strain network, West Antarctica, (c) the Q-13 and base camp sites on the Ross Ice Shelf, and (d) the South Pole and Dome C sites in East Antarctica. These near-surface microparticle studies indicate that, while the number of particles per unit volume of sample remains fairly uniform from site to site, the annual particle accumulation is greatest at locations nearest the coast and decreases rapidly with distance inland. The relationship between particle accumulation and distance from the coast is analogous to a relationship between snow accumulation and distance from the coast. Ten times more particles are deposited annually at stations within 50 km of the coast than at the South Pole and Dome C sites. The size distribution data reveal that, with the possible exception of the Q-13 site, the particulates deposited in Antarctica are well-sorted, indicating little contribution from local sources.

INTRODUCTION
Antarctica is considered to be an ideal site for investigating the natural particulate content of the global background aerosol. The reasons for this are (a) the low level of human activity, (b) the lack of exposed rock and soil, as 98% of Antarctica is covered by snow and ice, (c) lack of vegetation, and (d) the ice cover of much of the surrounding oceans restricts the contribution of marine-derived particulates to the margins of the continent. This lack of local source areas implies that particles are transported great distances and should represent the “end point” of the atmospheric particulate mass (Hogan 1975).

Shaw (1979) suggests that particles derived from outside Antarctica are not readily transported there due to the great distances involved, the inefficiency of meridional diffusion, and the removal by the frequent and severe storms associated with the Antarctic polar front. The particulates deposited on the Antarctic ice sheet and preserved within the ice layers provide an opportunity to investigate the effect of accumulation rates and distance of transport on their concentration.

Near-surface samples collected at seven Antarctic sites (Fig.1) have been analyzed for microparticle concentration and size distribution. The relationship between particle concentration and accumulation under present climatic conditions is investigated. The size distributions are compared among all seven sites. Conclusions are drawn from these data about the degree to which changes in accumulation may account for significantly enhanced particle concentrations found in snow deposited near the end of the last major glacial stage, the Wisconsin (Thompson and Mosley-Thompson 1981).

SAMPLING AND LABORATORY PROCEDURES
All analyses were of snow and firm samples and, therefore, several points of caution are necessary. Contamination is potentially a greater problem with more porous firm samples. The microparticle data presented here cover a minimum of 10 years at each site, but the precise time intervals represented by each profile are not equivalent due to different dates of sample collection. Consequently, all discussions employ average concentrations and size distribution. The effect of post-depositional diageneric processes upon the microparticle data is not considered.

With the exception of the Dome C pit samples, all samples were cut from snow and firm cores which were transferred frozen to The Ohio State University microparticle laboratory. The snow and firm cores were cut into 40 to 80 mm samples (sample size being largely a function of the annual accumulation at a given site) and transported to the clean room, where a 45 mm diameter plug was drilled from the center of each sample with a polyethylene hand corer. This procedure provides a sample which has not been in contact with the core driller or the shipping container. The Dome C pit samples were collected along a pit wall using a plastic 40 mm diameter syringe and shipped in plastic bottles (Palais personal communication). All snow and firm surface samples were analyzed within one year after collection.

All concentrations and size distributions were determined by multi-channel TAI® Coulter counters under class-100 clean room conditions. Insoluble particulates are counted in 14 size ranges from 0.6 to 12.5 µm diameter. The total concentration of microparticles is defined as the total number >0.6 µm diameter per 500 µL of liquid sample.

*Contribution No 413 of the Institute of Polar Studies, Ohio State University, Columbus, Ohio 43210, USA.
DISCUSSION OF THE DATA

Figure 1 illustrates the location of each sampling site and Table I presents a summary of all pertinent information. The particle concentrations per 500 µ sample are averaged over the entire length of each core or core section. For each site, the estimated annual accumulation rate is used to calculate the number of particles (diameter >0.63 µm) deposited annually.

Figure 2 illustrates microparticle concentrations in two shallow cores from a high accumulation (~910 kg m⁻² a⁻¹) area (72°30'S, 72°50'W) in the Antarctic Peninsula (site 1 in Figure 1). Summer melt here is quite low as the lack of ice lenses indicates. The two cores are separated by a horizontal distance of 5 m, yet particle concentration peaks can be traced easily between them. Since during drilling, firn cores tend to break along stratigraphic features, it is impossible on the basis of these data to distinguish whether these distinct microparticle peaks represent original depositional horizons or contamination on the ends of the individual core sections which might have occurred during drilling or transport of the cores.

Microparticle concentrations in two cores from a snow-field above Horse Bluff (71°18'S, 67°29'W) on the Antarctic Peninsula (site 2 in Figure 1) are shown in Figure 3. Annual accumulation here is much less (~220 kg m⁻² a⁻¹) than at site 1 and summer melting is substantial as indicated by the numerous ice lenses. The microparticle concentration tends to be lower in those sections composed of ice than in adjacent firn segments, suggesting that the particles are left behind in the firn layers during the melting and refreezing process. Even though the cores are separated horizontally by only 5 m, it is difficult to match individual particle concentration peaks in them as the depositional stratigraphy has been confused by a combination of processes including the percolation of melt water, deflation, and the redistribution of snow.

Surface cores were analyzed from two sites on the Ross Ice Shelf (RIS), Q-13 (78°57'S, 179°55'E) and base camp (~82°30'S, 166°W). Two upper sections from the 100 m Q-13 core drilled in 1977-78 are included in this study (Table I). The average annual rate of microparticle deposition was 820×10⁷ particles m⁻² a⁻¹ at Q-13, where accumulation is roughly 180 kg m⁻² a⁻¹. Microparticle concentrations in two 5 m cores drilled in 1974 from base camp were analyzed (Mosley-Thompson and Thompson 1982). At base camp, accumulation is approximately 90 kg m⁻² a⁻¹, one-half that at Q-13, and the number of microparticles deposited annually is
Thompson and Mosley-Thompson: Spatial distribution of microparticles within snowfall

Fig. 2. Microparticle concentration profiles for two 5 m cores 5 m apart on Monteverdi Peninsula (site 1 in Figure 1). Particle peaks can be traced from one core to the other. However, they are associated with the ends of individual core sections as indicated by tick marks. The stratigraphy on the right illustrates ice layers (solid black) and melting in transport to the laboratory (halft black).

-150x10^7 particles m^-2, 5.5 times fewer than at site Q-13. Base camp is ~500 km from the seaward margin of RIS while site Q-13 is ~180 km from the open water (sites 4 and 3 in Figure 1). Annually, this distance varies greatly with the seasonal growth and decay of sea ice, which effectively doubles the area of Antarctica. These large changes in sea-ice extent may affect storm track paths and create seasonal variations in the predominant source of the particles deposited at these sites.

The primary mechanism of particulate deposition on RIS is probably associated with dissipating cyclones. Meteorological data collected during the International Geophysical Year 1957-58 (IGY) identified the Ross Sea area as a major center of cycloysis. Recently, satellite observations of cloud vortices (Carleton 1979) confirm that the Ross Sea sector (160°E - 160°W) is a major graveyard for cyclones generated along the primary frontal axis extending from the Indian Ocean through the Pacific south of Australia and onto RIS (A in Figure 1). Not only are annual particle concentrations substantially less at J-9, but the number of larger particles (diameters >1.0 µm) expressed as a percent of the total is less (24%) than at Q-13 (30%). Assuming an Antarctic source for the large particles, this suggests that Q-13 is closer to the source area than J-9. Warburton and Linkletter (1978) analyzed RIS snow samples for Mg, Na, and K. Samples closer to the ice front of RIS exhibit near-marine ionic ratios, but south of Roosevelt Island (Fig. 1) enrichments of Mg and K suggest the influence of a fractionated marine aerosol and a second, continental, source. Microparticle concentration data from three inland locations are presented in Table I. The concentrations in the 2.5 to 3.3 m section of the 905 m Dome C core are nearly identical to concentrations in samples from three 3 m pits at Dome C. Of the seven sampling sites, the lowest microparticle deposition rate is ~80x10^7 particles m^-2 a^-1 at Dome C, which is 3240 m a.s.l. and over 1000 km from the Antarctic coast.

For comparison with these Antarctic deposition rates, similar calculations (Table I) were made for samples collected from two tropical glaciers where locally derived material constitutes the major particle source. These two glaciers are Quelccaya ice
TABLE I. SUMMARY OF PERTINENT GLACIOLOGICAL DATA FOR NINE SAMPLING SITES

<table>
<thead>
<tr>
<th>Location</th>
<th>Elevation (m)</th>
<th>Annual accumulation kg m⁻² a⁻¹</th>
<th>Number of cores/sections</th>
<th>Length of sections (m)</th>
<th>Horizontal separation of cores (m)</th>
<th>Number of samples</th>
<th>Average total particle concentration >0.04 µm per 500 µl</th>
<th>10 m temperature (°C)</th>
<th>Particles m⁻² a⁻¹ (x10⁷)</th>
<th>Name of data collector and year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antarctic Peninsula:</td>
<td></td>
</tr>
<tr>
<td>Quelccaya ice cap</td>
<td>5 650</td>
<td>1 170[8]</td>
<td>1</td>
<td>15.0</td>
<td></td>
<td>183</td>
<td>100 500[10]</td>
<td>-0.5°C</td>
<td>23 400</td>
<td>Thompson (1976)</td>
</tr>
<tr>
<td>Lewis Glacier</td>
<td>4 870</td>
<td>-500[9]</td>
<td>1</td>
<td>12.4</td>
<td></td>
<td>106</td>
<td>400 500[14]</td>
<td>0.0°C</td>
<td>40 000</td>
<td>Thompson (1976)</td>
</tr>
</tbody>
</table>

(1) Peel and Clausen personal communications
(2) Clausen and others 1979
(3) Crary and others 1962
(4) Gow 1971
(5) Gow 1965
(6) Mosley-Thompson 1980
(7) Petit and others in press
(8) Thompson and others 1979
(9) Hastingrath personal communications
(10) Thompson this paper
(11) Thompson 1973
(12) Whillans 1978
(13) Thompson and others 1981
(14) Thompson 1981
(15) Polar Ice Coring Office, Lincoln, Nebraska
A cursory investigation of current microparticle deposition within the large ice sheets. The difficulties encountered when attempting to infer past atmospheric conditions from the microparticles of dominant atmospheric circulation patterns and given site it is essential that the characteristics local boundary layer conditions be understood. This DISCUSSION measured in

\[\text{Number of Particles (Log Scale)} \]

Particle Diameter in Microns

Fig. 4. Average size distribution for 40 consecutive samples from each of seven Antarctic sampling sites and from two tropical sites, Quelccaya ice cap and Lewis Glacier, where locally derived material is abundant.

The purpose of this study is two-fold. First, the understanding of microparticle deposition at a given site it is essential that the characteristics of dominant atmospheric circulation patterns and local boundary layer conditions be understood. This cursory investigation of current microparticle deposition at seven Antarctic sites serves to illustrate the difficulties encountered when attempting to infer past atmospheric conditions from the microparticles deposited within the large ice sheets.

The first step is to distinguish locally derived material from background or "global" particulate mass. Locally derived material should be less well sorted and contain a greater fraction of larger fragments. Natural tropospheric aerosols range in radius between 0.1 and 20.0 µm (Junge 1977) and the settling effect of gravity is negligible for particles <1.0 µm. The particle size distribution data presented in this paper suggest that the particulates deposited at both inland and coastal Antarctic sites are well sorted with very low numbers of larger particles (>1.0 µm). Inspection of Figure 4 reveals that Q-13 may be an exception as it exhibits a size distribution which, for particles with diameters >2.5 µm, more closely resembles that of tropical ice caps. This indicates the contribution of a local source, probably the exposed areas on Ross Island and along the coast of east Antarctica (Fig. 1). Certainly at each site the contribution from local source areas will be dependent on local wind velocities and directions.

In general, sampling sites closer to the coast exhibit a greater rate of microparticle deposition ranging from 3,000x10^7 particles m^-2 a^-1 at Monteverdi Peninsula (Fig. 1) to 800x10^7 particles m^-2 a^-1 at both Horse Bluff snow-field and Q-13. Results from base camp are anomalous (~150x10^7 particles m^-2 a^-1), reflecting the rapid removal of material as dissipating cyclones move inland across RIS. These attempts to interpret the microparticle records illustrate the importance of detailed synoptic observations.

The effect of local accumulation rate upon (a) deposition of microparticles and (b) concentration and/or dilution of deposited material is another aspect which warrants investigation. It is unknown what percentage of insoluble particulates are deposited within snow and ice crystals and what percentage arrive at the surface as dry fallout. Assuming for the sake of argument that the variability of dry fallout is negligible, to examine the data in Table 1 for South Pole and Dome C. The ratio of accumulation at South Pole to Dome C is 2.19 and the ratio of particle deposition is 2.26, suggesting that under current atmospheric conditions a doubling of accumulation within a year also doubles the particles deposited. Of course, this assumes identical meteorological conditions and an equal dry fallout contribution.

A similar comparison between the two sites on the Antarctic Peninsula gives a ratio of 4.14 for the accumulation and 3.65 for the ratio of particle deposition rates. Given these simplifying assumptions, these data indicate that greater accumulation tends to be associated with greater annual particulate deposition. Figure 5 illustrates that the relationship between annual particle deposition and distance from the coast is analogous to the relationship between annual water accumulation and distance from the coast.

The purpose of this study is two-fold. First, the data presented represent all the Antarctic sites where surface microparticle measurements have been conducted. Particle concentrations are shown to be

\[\text{Number of Particles} \]

Distance from Coast

Fig. 5. The left diagram represents the relationship between particle concentrations and distance from the coast for seven Antarctic sample sites. On the right is the plot of annual water accumulation vs distance from the coast for each location.
inversely related to the distance from the source, and the use of size distribution for identifying the contribution of local sources is demonstrated. Second, these data illustrate the need for a better understanding of the mechanisms controlling microparticle deposition in Antarctica.

Data presented by Thompson and Mosley-Thompson (1981) and Thompson and others (1981) do not support a change in net accumulation as the mechanism producing the great increases in microparticles within the late-glacial (Wisconsin) ice in the 905 m Dome C, Antarctica core. An increase in the particulate loading of the atmosphere and a greater contribution by dry fallout are suggested to account for the substantial increase in microparticles. Earlier microparticle analysis of sections from Byrd station, Antarctica, and Camp Century, Greenland, deep ice cores (Thompson 1977) revealed great increases in particle concentrations associated with the ice deposited during the Wisconsin glacial stage. Koerner (1977) reports very high dust content within the Wisconsin ice of the 299 m Devon Island ice cap core. For both the Camp Century and Byrd cores, Cragin and others (1977) report substantial increases in the concentrations of alkali and alkaline earth elements in the late glacial ice. These studies have invoked one or all of the following mechanisms to account for these increases: (1) changes in the annual accumulation, (2) changes in the concentration of material suspended in the atmosphere, and (3) alteration in the type of precipitation (e.g. ice crystal vs. snow).

In order to facilitate the interpretation of microparticle data from firm and ice cores it is critical that a sound theoretical basis and realistic empirical framework be developed on the basis of the current microparticle depositional pattern and concurrent measurements of atmospheric particulate concentrations. The microparticle records contained within the large ice sheets provide the only available high-resolution record of past atmospheric characteristics. Consequently, it behooves us to construct a microparticle database for future expansion and continual re-interpretation as more microparticle data and longer and better synoptic records become available. Eventually these data will provide the proper climatic explanation for the substantial variations in microparticle concentrations and size distributions recorded within the deep ice cores.

ACKNOWLEDGEMENTS

The authors wish to express appreciation to D Peel of the British Antarctic Survey, J Nielson of the University of Copenhagen, and J Palais of Ohio State University for their efforts in collecting firm cores and pit samples. We thank illustrator Bob Tope for the diagrams used in this manuscript and Jean Cothran for typing it. We express gratitude to the U.S. National Science Foundation and the Ohio State University for support of microparticle research over the past seven years.

REFERENCES

Gow A J 1971 Depth-time-temperature relationships of ice crystal growth in polar glaciers. CRREL Research Rep 71-8

Junge C E 1977 Processes responsible for the trace content in precipitation. Association of Hydrological Sciences Publication 118 (General Assembly of Grenoble 1976 - Isotopes and Impurities in Snow and Ice): 63-77

Koerner R M 1977 Distribution of microparticles in a 299-m core through the Devon Island ice cap, Northwest Territories, Canada. International Association of Hydrological Sciences Publication 118 (General Assembly of Grenoble 1976 - Isotopes and Impurities in Snow and Ice): 371-376

Thompson L G 1973 Analysis of the concentration of microparticles in an ice core from Byrd station, Antarctica. Ohio State University. Institute of Polar Studies. Report 46

Thompson L G 1977 Variations in microparticle concentration, size distribution and elemental composition in Camp Century, Greenland, and Byrd station, Antarctica, deep ice cores. International Association of Hydrological Sciences Publication 118 (General Assembly of Grenoble 1976 - Isotopes and Impurities in Snow and Ice): 351-364

Thompson L G 1981 Ice core studies from Mt Kenya, Africa, and their relationship to other tropical ice core studies. International Association of Hydrological Sciences Publication 131 (Symposium at Canberra 1979 - Sea level, ice and climate change): 55-62

